Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
D
duizhang_tools
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
data—王林芳
duizhang_tools
Commits
c26fefc9
Commit
c26fefc9
authored
Nov 17, 2017
by
Perry_Zhu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
白条在贷调整
parent
479d4a2b
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
11 additions
and
43 deletions
+11
-43
白条在贷明细--按order_no维度.py
审计第二阶段/白条(非去哪儿)/白条在贷明细--按order_no维度.py
+10
-42
白条在贷明细20171031.py
审计第二阶段/白条(非去哪儿)/白条在贷明细20171031.py
+1
-1
No files found.
审计第二阶段/白条(非去哪儿)/白条在贷明细--按order_no维度.py
View file @
c26fefc9
...
...
@@ -5,8 +5,6 @@ import pandas as pd
import
numpy
as
np
import
datetime
from
sqlalchemy
import
create_engine
import
pyexcelerate
max_limit
=
800000
reload
(
sys
)
sys
.
setdefaultencoding
(
'utf8'
)
...
...
@@ -14,12 +12,9 @@ sys.setdefaultencoding('utf8')
engine_new_transaction
=
create_engine
(
'mysql+mysqldb://internal_r:ArbNgtvlJzZHXsEu@172.16.3.201:3306/all_back_0930?charset=utf8'
,
echo
=
True
)
#假如导出10月份的数据,则end_point 是11月份第一天,watch_point 是10月份最后一天
end_point
=
'2017-10-01'
watch_point
=
datetime
.
date
(
2017
,
9
,
30
)
out_file_path
=
u'E:/审计出表/11月份开始使用表数据/11月份白条出表/在贷/'
out_file_path
=
u'E:/数据汇总/白条/在贷/'
query_loan
=
"""
SELECT
tt.order_no,tt.term_no,
...
...
@@ -109,7 +104,7 @@ loan_info = """
date(o.train_cancel_at) loan_paid_at
FROM
baitiao_order o
JOIN merchant m ON o.merchantId = m.merchant_id AND
is_active=1 AND funding_corp_id
= -2
JOIN merchant m ON o.merchantId = m.merchant_id AND
funding_corp_id=1 AND is_active
= -2
GROUP BY 1
)tt
GROUP BY 1
...
...
@@ -200,6 +195,7 @@ select tt.order_no,tt.term_no,tt.paid_principle from(
GROUP BY 1,2
)tt
GROUP BY 1,2
"""
df_info
=
pd
.
read_sql
(
loan_info
,
engine_new_transaction
)
...
...
@@ -209,7 +205,6 @@ df_ali = pd.read_sql(repay_ali % end_point, engine_new_transaction)
df_bank
=
pd
.
read_sql
(
repay_bank
%
end_point
,
engine_new_transaction
)
df_cash
=
pd
.
read_sql
(
repay_cash
%
(
end_point
,
end_point
),
engine_new_transaction
)
df_repay
=
pd
.
concat
([
df_online
,
df_ali
,
df_bank
,
df_cash
],
axis
=
0
,
ignore_index
=
True
)
df_repay
.
dropna
(
axis
=
0
,
inplace
=
True
)
df_loan
=
df_loan
.
loc
[
df_loan
[
'principle'
]
>
0
]
df_info
.
order_no
=
df_info
.
order_no
.
astype
(
str
)
...
...
@@ -221,9 +216,6 @@ df_repay = df_repay.groupby(['order_no', 'term_no'])['paid_principle'].agg({'sum
df_out
=
pd
.
merge
(
df_loan
,
df_repay
,
on
=
[
'order_no'
,
'term_no'
],
how
=
'left'
)
df_out
[
'deadline'
]
=
pd
.
to_datetime
(
df_out
.
deadline
)
df_out
.
fillna
(
0
,
inplace
=
True
)
# watch_point = datetime.date(2017, 9, 30)
df_out
[
'flag'
]
=
(
watch_point
-
df_out
[
'deadline'
])
.
dt
.
days
df_out
[
'zaidai'
]
=
df_out
[
'principle'
]
-
df_out
[
'paid_principle'
]
df_out
.
loc
[
df_out
[
'order_no'
]
.
isin
(
[
'trainmall1483695024282'
,
'trainmall1484301600672'
,
'trainmall1486362269554'
,
'trainmall1487920296689'
,
...
...
@@ -231,38 +223,14 @@ df_out.loc[df_out['order_no'].isin(
'trainmall1484301600672'
,
'trainmall1486362269554'
,
'grabtrainmall1484650405321'
,
'trainmall1495785791995'
,
'trainmall1499935282194'
,
'trainmall16008368458050561'
,
'trainmall16008408858634241'
,
'trainmall16112348780571649'
,
'trainmall16112552463312897'
]),
'zaidai'
]
=
0
#只在17年使用的部分,调账使用
'''
df_out.loc[df_out['product_no']=='300156290067001502503609','flag'] = 1
'''
df_out
.
loc
[(
df_out
[
'flag'
]
<=
0
),
'0'
]
=
df_out
[
'zaidai'
]
df_out
.
loc
[(
df_out
[
'flag'
]
>=
1
)
&
(
df_out
[
'flag'
]
<=
30
),
'01-30'
]
=
df_out
[
'zaidai'
]
df_out
.
loc
[(
df_out
[
'flag'
]
>=
31
)
&
(
df_out
[
'flag'
]
<=
60
),
'31-60'
]
=
df_out
[
'zaidai'
]
df_out
.
loc
[(
df_out
[
'flag'
]
>=
61
)
&
(
df_out
[
'flag'
]
<=
90
),
'61-90'
]
=
df_out
[
'zaidai'
]
df_out
.
loc
[(
df_out
[
'flag'
]
>=
91
)
&
(
df_out
[
'flag'
]
<=
120
),
'91-120'
]
=
df_out
[
'zaidai'
]
df_out
.
loc
[(
df_out
[
'flag'
]
>=
121
)
&
(
df_out
[
'flag'
]
<=
150
),
'121-150'
]
=
df_out
[
'zaidai'
]
df_out
.
loc
[(
df_out
[
'flag'
]
>=
151
)
&
(
df_out
[
'flag'
]
<=
180
),
'151-180'
]
=
df_out
[
'zaidai'
]
df_out
.
loc
[(
df_out
[
'flag'
]
>=
181
)
&
(
df_out
[
'flag'
]
<=
360
),
'181-360'
]
=
df_out
[
'zaidai'
]
df_out
.
loc
[(
df_out
[
'flag'
]
>=
361
),
'361+'
]
=
df_out
[
'zaidai'
]
# df_out['zaidai'] = df_out['zaidai'].apply(lambda x: np.round(x, 2))
df
=
df_out
.
groupby
([
'order_no'
])[
'0'
,
'01-30'
,
'31-60'
,
'61-90'
,
'91-120'
,
'121-150'
,
'151-180'
,
'181-360'
,
'361+'
]
.
sum
()
.
reset_index
()
df
.
fillna
(
0
,
inplace
=
True
)
df
=
df_out
.
groupby
([
'order_no'
])[
'zaidai'
]
.
agg
({
'sum'
})
.
reset_index
()
.
rename
(
columns
=
{
'sum'
:
u'未还本金'
})
df_loan
.
order_no
=
df_loan
.
order_no
.
astype
(
str
)
df
=
pd
.
merge
(
df
,
df_info
,
on
=
'order_no'
,
how
=
'left'
)
df
.
rename
(
columns
=
{
'order_no'
:
u'订单号'
},
inplace
=
True
)
df
=
df
[[
u'商户'
,
u'订单号'
,
u'订单金额'
,
u'合同期数'
,
u'放款时间'
,
'0'
,
'01-30'
,
'31-60'
,
'61-90'
,
'91-120'
,
'121-150'
,
'151-180'
,
'181-360'
,
'361+'
]]
all_wb
=
pyexcelerate
.
Workbook
()
for
i
in
xrange
(
0
,
len
(
df
),
max_limit
):
temp
=
df
[
i
:
i
+
max_limit
]
temp_list
=
temp
.
values
.
tolist
()
temp_list
.
insert
(
0
,
temp
.
columns
.
tolist
())
all_wb
.
new_sheet
(
str
(
int
(
i
/
max_limit
+
1
)),
data
=
temp_list
)
all_wb
.
save
(
out_file_path
+
u'白条在贷按order_no展开_
%
s.xlsx'
%
end_point
)
# df.to_csv(out_file_path + u'白条在贷按order_no展开_%s.csv' % end_point, index=None, encoding='UTF-8')
df
=
df
[[
u'商户'
,
'order_no'
,
u'订单金额'
,
u'合同期数'
,
u'放款时间'
,
u'未还本金'
]]
df
[
u'未还本金'
]
.
fillna
(
0
,
inplace
=
True
)
df
.
rename
(
columns
=
{
'order_no'
:
u'订单号'
},
inplace
=
True
)
step
=
1000000
for
n
in
range
(
0
,
len
(
df
),
step
):
df
[
n
:
n
+
step
]
.
to_csv
(
out_file_path
+
u'白条在贷按order_no展开_
%
s.csv'
%
(
end_point
,
n
),
index
=
None
,
encoding
=
'UTF-8'
)
审计第二阶段/白条(非去哪儿)/白条在贷明细20171031.py
View file @
c26fefc9
...
...
@@ -81,7 +81,7 @@ loan_info = """
date(o.train_cancel_at) loan_paid_at
FROM
baitiao_order o
JOIN merchant m ON o.merchantId = m.merchant_id AND o.
is_active=1 AND o.funding_corp_id
= -2 and o.baitiao_type=0
JOIN merchant m ON o.merchantId = m.merchant_id AND o.
funding_corp_id=1 AND o.is_active
= -2 and o.baitiao_type=0
GROUP BY 1
)tt
GROUP BY 1
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment