Commit 052263d5 authored by 桂秋月's avatar 桂秋月

添加真实uuid的判断

parent 3a89a0bc
File added
......@@ -3,21 +3,6 @@
<component name="JavaScriptSettings">
<option name="languageLevel" value="ES6" />
</component>
<component name="MavenImportPreferences">
<option name="generalSettings">
<MavenGeneralSettings>
<option name="localRepository" value="/usr/local/maven/loacalRepository" />
<option name="mavenHome" value="/usr/local/maven/apache-maven-3.5.2" />
<option name="userSettingsFile" value="/usr/local/maven/apache-maven-3.5.2/conf/settings.xml" />
</MavenGeneralSettings>
</option>
<option name="importingSettings">
<MavenImportingSettings>
<option name="generatedSourcesFolder" value="GENERATED_SOURCE_FOLDER" />
<option name="importAutomatically" value="true" />
</MavenImportingSettings>
</option>
</component>
<component name="ProjectInspectionProfilesVisibleTreeState">
<entry key="Project Default">
<profile-state>
......@@ -157,25 +142,7 @@
</profile-state>
</entry>
</component>
<component name="ProjectLevelVcsManager" settingsEditedManually="false">
<OptionsSetting value="true" id="Add" />
<OptionsSetting value="true" id="Remove" />
<OptionsSetting value="true" id="Checkout" />
<OptionsSetting value="true" id="Update" />
<OptionsSetting value="true" id="Status" />
<OptionsSetting value="true" id="Edit" />
<ConfirmationsSetting value="0" id="Add" />
<ConfirmationsSetting value="0" id="Remove" />
</component>
<component name="ProjectRootManager" version="2" languageLevel="JDK_1_6" default="false" assert-keyword="true" jdk-15="true" project-jdk-name="Python 3.6.10 (~/opt/anaconda3/envs/python36/bin/python3.6)" project-jdk-type="Python SDK" />
<component name="PyConsoleOptionsProvider">
<option name="myPythonConsoleState">
<console-settings sdk-home="$USER_HOME$/opt/anaconda3/envs/python36/bin/python3.6">
<option name="mySdkHome" value="$USER_HOME$/opt/anaconda3/envs/python36/bin/python3.6" />
<option name="myAddSourceRoots" value="true" />
</console-settings>
</option>
</component>
<component name="ProjectRootManager" version="2" languageLevel="JDK_1_6" project-jdk-name="Python 3.7" project-jdk-type="Python SDK" />
<component name="SvnConfiguration">
<configuration>$USER_HOME$/.subversion</configuration>
</component>
......
......@@ -2,7 +2,9 @@
<module type="JAVA_MODULE" version="4">
<component name="NewModuleRootManager" inherit-compiler-output="true">
<exclude-output />
<content url="file://$MODULE_DIR$" />
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$" isTestSource="false" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
......
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="AutoImportSettings">
<option name="autoReloadType" value="ALL" />
</component>
<component name="ChangeListManager">
<list default="true" id="65ec9bc1-9334-4fb0-a73d-621c8e760de6" name="Default Changelist" comment="">
<change beforePath="$PROJECT_DIR$/.idea/misc.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/misc.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/model-data-test.iml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/model-data-test.iml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/model_data_api/handler/Automatic_Handler.py" beforeDir="false" afterPath="$PROJECT_DIR$/model_data_api/handler/Automatic_Handler.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/model_data_api/handler/logic.py" beforeDir="false" afterPath="$PROJECT_DIR$/model_data_api/handler/logic.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/model_data_api/model/dataSetDetail_model.py" beforeDir="false" afterPath="$PROJECT_DIR$/model_data_api/model/dataSetDetail_model.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/model_data_api/model/featureData_model.py" beforeDir="false" afterPath="$PROJECT_DIR$/model_data_api/model/featureData_model.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/model_data_test/settings.py" beforeDir="false" afterPath="$PROJECT_DIR$/model_data_test/settings.py" afterDir="false" />
</list>
<option name="SHOW_DIALOG" value="false" />
<option name="HIGHLIGHT_CONFLICTS" value="true" />
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
<option name="LAST_RESOLUTION" value="IGNORE" />
</component>
<component name="Git.Settings">
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
</component>
<component name="JupyterTrust" id="ad4c8fd4-a4d0-4645-b595-4e06968dc07a" />
<component name="MavenImportPreferences">
<option name="generalSettings">
<MavenGeneralSettings>
<option name="localRepository" value="/usr/local/maven/loacalRepository" />
<option name="mavenHome" value="/usr/local/maven/apache-maven-3.5.2" />
<option name="userSettingsFile" value="/usr/local/maven/apache-maven-3.5.2/conf/settings.xml" />
</MavenGeneralSettings>
</option>
<option name="importingSettings">
<MavenImportingSettings>
<option name="generatedSourcesFolder" value="GENERATED_SOURCE_FOLDER" />
</MavenImportingSettings>
</option>
</component>
<component name="ProjectId" id="1re2OqHWm0oPmzaQtTT2J4s8MWf" />
<component name="ProjectViewState">
<option name="hideEmptyMiddlePackages" value="true" />
<option name="showLibraryContents" value="true" />
</component>
<component name="PropertiesComponent">
<property name="ASKED_ADD_EXTERNAL_FILES" value="true" />
<property name="RunOnceActivity.OpenProjectViewOnStart" value="true" />
<property name="RunOnceActivity.ShowReadmeOnStart" value="true" />
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
<property name="WebServerToolWindowFactoryState" value="false" />
<property name="aspect.path.notification.shown" value="true" />
<property name="last_opened_file_path" value="$PROJECT_DIR$" />
<property name="project.structure.last.edited" value="Modules" />
<property name="project.structure.proportion" value="0.15" />
<property name="project.structure.side.proportion" value="0.2" />
<property name="settings.editor.selected.configurable" value="preferences.lookFeel" />
</component>
<component name="PyConsoleOptionsProvider">
<option name="myPythonConsoleState">
<console-settings sdk-home="$USER_HOME$/opt/anaconda3/envs/python36/bin/python3.6">
<option name="mySdkHome" value="$USER_HOME$/opt/anaconda3/envs/python36/bin/python3.6" />
</console-settings>
</option>
</component>
<component name="RunManager">
<configuration name="startup" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
<module name="model-data-test" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="/usr/local/bin/python3.7" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="false" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/startup.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<recent_temporary>
<list>
<item itemvalue="Python.startup" />
</list>
</recent_temporary>
</component>
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
<component name="SvnConfiguration">
<configuration>$USER_HOME$/.subversion</configuration>
</component>
<component name="TaskManager">
<task active="true" id="Default" summary="Default task">
<changelist id="65ec9bc1-9334-4fb0-a73d-621c8e760de6" name="Default Changelist" comment="" />
<created>1619322205478</created>
<option name="number" value="Default" />
<option name="presentableId" value="Default" />
<updated>1619322205478</updated>
<workItem from="1619322207223" duration="12323000" />
<workItem from="1619419245278" duration="2335000" />
<workItem from="1619490114301" duration="1847000" />
<workItem from="1620440234843" duration="1666000" />
<workItem from="1621232492042" duration="2693000" />
<workItem from="1621246463980" duration="265000" />
<workItem from="1621392800825" duration="231000" />
<workItem from="1626956770039" duration="546000" />
</task>
<servers />
</component>
<component name="TypeScriptGeneratedFilesManager">
<option name="version" value="1" />
</component>
<component name="UnknownFeatures">
<option featureType="com.intellij.fileTypeFactory" implementationName="*.log" />
</component>
<component name="Vcs.Log.Tabs.Properties">
<option name="TAB_STATES">
<map>
<entry key="MAIN">
<value>
<State />
</value>
</entry>
</map>
</option>
</component>
<component name="XDebuggerManager">
<breakpoint-manager>
<breakpoints>
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
<url>file://$PROJECT_DIR$/model_data_api/handler/Automatic_Handler.py</url>
<line>75</line>
<option name="timeStamp" value="4" />
</line-breakpoint>
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
<url>file://$PROJECT_DIR$/model_data_api/handler/Automatic_Handler.py</url>
<line>30</line>
<option name="timeStamp" value="9" />
</line-breakpoint>
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
<url>file://$PROJECT_DIR$/model_data_api/handler/logic.py</url>
<line>96</line>
<option name="timeStamp" value="12" />
</line-breakpoint>
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
<url>file://$PROJECT_DIR$/model_data_api/handler/logic.py</url>
<line>132</line>
<option name="timeStamp" value="13" />
</line-breakpoint>
</breakpoints>
</breakpoint-manager>
</component>
<component name="XSLT-Support.FileAssociations.UIState">
<expand />
<select />
</component>
</project>
\ No newline at end of file
[[source]]
url = "https://mirrors.aliyun.com/pypi/simple/"
verify_ssl = true
name = "pypi"
[packages]
celery = "*"
tasks = "*"
tornado = "*"
tornado-sqlalchemy = "*"
sqlalchemy = "*"
pymysql = "*"
pandas = "*"
requests = "*"
tqdm = "*"
[dev-packages]
[requires]
python_version = "3.7"
{
"_meta": {
"hash": {
"sha256": "65bd3bd737526ff2419b6c3d0d79d8525eeac5a052f1830597d8019996f18938"
},
"pipfile-spec": 6,
"requires": {
"python_version": "3.7"
},
"sources": [
{
"name": "pypi",
"url": "https://mirrors.aliyun.com/pypi/simple/",
"verify_ssl": true
}
]
},
"default": {
"amqp": {
"hashes": [
"sha256:03e16e94f2b34c31f8bf1206d8ddd3ccaa4c315f7f6a1879b7b1210d229568c2",
"sha256:493a2ac6788ce270a2f6a765b017299f60c1998f5a8617908ee9be082f7300fb"
],
"markers": "python_version >= '3.6'",
"version": "==5.0.6"
},
"billiard": {
"hashes": [
"sha256:299de5a8da28a783d51b197d496bef4f1595dd023a93a4f59dde1886ae905547",
"sha256:87103ea78fa6ab4d5c751c4909bcff74617d985de7fa8b672cf8618afd5a875b"
],
"version": "==3.6.4.0"
},
"celery": {
"hashes": [
"sha256:5e8d364e058554e83bbb116e8377d90c79be254785f357cb2cec026e79febe13",
"sha256:f4efebe6f8629b0da2b8e529424de376494f5b7a743c321c8a2ddc2b1414921c"
],
"index": "pypi",
"version": "==5.0.5"
},
"certifi": {
"hashes": [
"sha256:1a4995114262bffbc2413b159f2a1a480c969de6e6eb13ee966d470af86af59c",
"sha256:719a74fb9e33b9bd44cc7f3a8d94bc35e4049deebe19ba7d8e108280cfd59830"
],
"version": "==2020.12.5"
},
"chardet": {
"hashes": [
"sha256:0d6f53a15db4120f2b08c94f11e7d93d2c911ee118b6b30a04ec3ee8310179fa",
"sha256:f864054d66fd9118f2e67044ac8981a54775ec5b67aed0441892edb553d21da5"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'",
"version": "==4.0.0"
},
"click": {
"hashes": [
"sha256:d2b5255c7c6349bc1bd1e59e08cd12acbbd63ce649f2588755783aa94dfb6b1a",
"sha256:dacca89f4bfadd5de3d7489b7c8a566eee0d3676333fbb50030263894c38c0dc"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'",
"version": "==7.1.2"
},
"click-didyoumean": {
"hashes": [
"sha256:112229485c9704ff51362fe34b2d4f0b12fc71cc20f6d2b3afabed4b8bfa6aeb"
],
"version": "==0.0.3"
},
"click-plugins": {
"hashes": [
"sha256:46ab999744a9d831159c3411bb0c79346d94a444df9a3a3742e9ed63645f264b",
"sha256:5d262006d3222f5057fd81e1623d4443e41dcda5dc815c06b442aa3c02889fc8"
],
"version": "==1.1.1"
},
"click-repl": {
"hashes": [
"sha256:9c4c3d022789cae912aad8a3f5e1d7c2cdd016ee1225b5212ad3e8691563cda5",
"sha256:b9f29d52abc4d6059f8e276132a111ab8d94980afe6a5432b9d996544afa95d5"
],
"version": "==0.1.6"
},
"datadispatch": {
"hashes": [
"sha256:3c0456934e99f21137332deebbda05713dc07fcb142dfc01ef83d6b17aeaf08e",
"sha256:527ad534881d7f6144a8ff643c260a3d2ae0d50e8ee24ec4b0fdae72d6c7beab"
],
"version": "==1.0.0"
},
"greenlet": {
"hashes": [
"sha256:0a77691f0080c9da8dfc81e23f4e3cffa5accf0f5b56478951016d7cfead9196",
"sha256:0ddd77586553e3daf439aa88b6642c5f252f7ef79a39271c25b1d4bf1b7cbb85",
"sha256:111cfd92d78f2af0bc7317452bd93a477128af6327332ebf3c2be7df99566683",
"sha256:122c63ba795fdba4fc19c744df6277d9cfd913ed53d1a286f12189a0265316dd",
"sha256:181300f826625b7fd1182205b830642926f52bd8cdb08b34574c9d5b2b1813f7",
"sha256:1a1ada42a1fd2607d232ae11a7b3195735edaa49ea787a6d9e6a53afaf6f3476",
"sha256:1bb80c71de788b36cefb0c3bb6bfab306ba75073dbde2829c858dc3ad70f867c",
"sha256:1d1d4473ecb1c1d31ce8fd8d91e4da1b1f64d425c1dc965edc4ed2a63cfa67b2",
"sha256:292e801fcb3a0b3a12d8c603c7cf340659ea27fd73c98683e75800d9fd8f704c",
"sha256:2c65320774a8cd5fdb6e117c13afa91c4707548282464a18cf80243cf976b3e6",
"sha256:4365eccd68e72564c776418c53ce3c5af402bc526fe0653722bc89efd85bf12d",
"sha256:5352c15c1d91d22902582e891f27728d8dac3bd5e0ee565b6a9f575355e6d92f",
"sha256:58ca0f078d1c135ecf1879d50711f925ee238fe773dfe44e206d7d126f5bc664",
"sha256:5d4030b04061fdf4cbc446008e238e44936d77a04b2b32f804688ad64197953c",
"sha256:5d69bbd9547d3bc49f8a545db7a0bd69f407badd2ff0f6e1a163680b5841d2b0",
"sha256:5f297cb343114b33a13755032ecf7109b07b9a0020e841d1c3cedff6602cc139",
"sha256:62afad6e5fd70f34d773ffcbb7c22657e1d46d7fd7c95a43361de979f0a45aef",
"sha256:647ba1df86d025f5a34043451d7c4a9f05f240bee06277a524daad11f997d1e7",
"sha256:719e169c79255816cdcf6dccd9ed2d089a72a9f6c42273aae12d55e8d35bdcf8",
"sha256:7cd5a237f241f2764324396e06298b5dee0df580cf06ef4ada0ff9bff851286c",
"sha256:875d4c60a6299f55df1c3bb870ebe6dcb7db28c165ab9ea6cdc5d5af36bb33ce",
"sha256:90b6a25841488cf2cb1c8623a53e6879573010a669455046df5f029d93db51b7",
"sha256:94620ed996a7632723a424bccb84b07e7b861ab7bb06a5aeb041c111dd723d36",
"sha256:b5f1b333015d53d4b381745f5de842f19fe59728b65f0fbb662dafbe2018c3a5",
"sha256:c5b22b31c947ad8b6964d4ed66776bcae986f73669ba50620162ba7c832a6b6a",
"sha256:c93d1a71c3fe222308939b2e516c07f35a849c5047f0197442a4d6fbcb4128ee",
"sha256:cdb90267650c1edb54459cdb51dab865f6c6594c3a47ebd441bc493360c7af70",
"sha256:cfd06e0f0cc8db2a854137bd79154b61ecd940dce96fad0cba23fe31de0b793c",
"sha256:d3789c1c394944084b5e57c192889985a9f23bd985f6d15728c745d380318128",
"sha256:da7d09ad0f24270b20f77d56934e196e982af0d0a2446120cb772be4e060e1a2",
"sha256:df3e83323268594fa9755480a442cabfe8d82b21aba815a71acf1bb6c1776218",
"sha256:df8053867c831b2643b2c489fe1d62049a98566b1646b194cc815f13e27b90df",
"sha256:e1128e022d8dce375362e063754e129750323b67454cac5600008aad9f54139e",
"sha256:e6e9fdaf6c90d02b95e6b0709aeb1aba5affbbb9ccaea5502f8638e4323206be",
"sha256:eac8803c9ad1817ce3d8d15d1bb82c2da3feda6bee1153eec5c58fa6e5d3f770",
"sha256:eb333b90036358a0e2c57373f72e7648d7207b76ef0bd00a4f7daad1f79f5203",
"sha256:ed1d1351f05e795a527abc04a0d82e9aecd3bdf9f46662c36ff47b0b00ecaf06",
"sha256:f3dc68272990849132d6698f7dc6df2ab62a88b0d36e54702a8fd16c0490e44f",
"sha256:f59eded163d9752fd49978e0bab7a1ff21b1b8d25c05f0995d140cc08ac83379",
"sha256:f5e2d36c86c7b03c94b8459c3bd2c9fe2c7dab4b258b8885617d44a22e453fb7",
"sha256:f6f65bf54215e4ebf6b01e4bb94c49180a589573df643735107056f7a910275b",
"sha256:f8450d5ef759dbe59f84f2c9f77491bb3d3c44bc1a573746daf086e70b14c243",
"sha256:f97d83049715fd9dec7911860ecf0e17b48d8725de01e45de07d8ac0bd5bc378"
],
"markers": "python_version >= '3'",
"version": "==1.0.0"
},
"idna": {
"hashes": [
"sha256:b307872f855b18632ce0c21c5e45be78c0ea7ae4c15c828c20788b26921eb3f6",
"sha256:b97d804b1e9b523befed77c48dacec60e6dcb0b5391d57af6a65a312a90648c0"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
"version": "==2.10"
},
"importlib-metadata": {
"hashes": [
"sha256:8c501196e49fb9df5df43833bdb1e4328f64847763ec8a50703148b73784d581",
"sha256:d7eb1dea6d6a6086f8be21784cc9e3bcfa55872b52309bc5fad53a8ea444465d"
],
"markers": "python_version < '3.8'",
"version": "==4.0.1"
},
"kombu": {
"hashes": [
"sha256:6dc509178ac4269b0e66ab4881f70a2035c33d3a622e20585f965986a5182006",
"sha256:f4965fba0a4718d47d470beeb5d6446e3357a62402b16c510b6a2f251e05ac3c"
],
"markers": "python_version >= '3.6'",
"version": "==5.0.2"
},
"numpy": {
"hashes": [
"sha256:2428b109306075d89d21135bdd6b785f132a1f5a3260c371cee1fae427e12727",
"sha256:377751954da04d4a6950191b20539066b4e19e3b559d4695399c5e8e3e683bf6",
"sha256:4703b9e937df83f5b6b7447ca5912b5f5f297aba45f91dbbbc63ff9278c7aa98",
"sha256:471c0571d0895c68da309dacee4e95a0811d0a9f9f532a48dc1bea5f3b7ad2b7",
"sha256:61d5b4cf73622e4d0c6b83408a16631b670fc045afd6540679aa35591a17fe6d",
"sha256:6c915ee7dba1071554e70a3664a839fbc033e1d6528199d4621eeaaa5487ccd2",
"sha256:6e51e417d9ae2e7848314994e6fc3832c9d426abce9328cf7571eefceb43e6c9",
"sha256:719656636c48be22c23641859ff2419b27b6bdf844b36a2447cb39caceb00935",
"sha256:780ae5284cb770ade51d4b4a7dce4faa554eb1d88a56d0e8b9f35fca9b0270ff",
"sha256:878922bf5ad7550aa044aa9301d417e2d3ae50f0f577de92051d739ac6096cee",
"sha256:924dc3f83de20437de95a73516f36e09918e9c9c18d5eac520062c49191025fb",
"sha256:97ce8b8ace7d3b9288d88177e66ee75480fb79b9cf745e91ecfe65d91a856042",
"sha256:9c0fab855ae790ca74b27e55240fe4f2a36a364a3f1ebcfd1fb5ac4088f1cec3",
"sha256:9cab23439eb1ebfed1aaec9cd42b7dc50fc96d5cd3147da348d9161f0501ada5",
"sha256:a8e6859913ec8eeef3dbe9aed3bf475347642d1cdd6217c30f28dee8903528e6",
"sha256:aa046527c04688af680217fffac61eec2350ef3f3d7320c07fd33f5c6e7b4d5f",
"sha256:abc81829c4039e7e4c30f7897938fa5d4916a09c2c7eb9b244b7a35ddc9656f4",
"sha256:bad70051de2c50b1a6259a6df1daaafe8c480ca98132da98976d8591c412e737",
"sha256:c73a7975d77f15f7f68dacfb2bca3d3f479f158313642e8ea9058eea06637931",
"sha256:d15007f857d6995db15195217afdbddfcd203dfaa0ba6878a2f580eaf810ecd6",
"sha256:d76061ae5cab49b83a8cf3feacefc2053fac672728802ac137dd8c4123397677",
"sha256:e8e4fbbb7e7634f263c5b0150a629342cc19b47c5eba8d1cd4363ab3455ab576",
"sha256:e9459f40244bb02b2f14f6af0cd0732791d72232bbb0dc4bab57ef88e75f6935",
"sha256:edb1f041a9146dcf02cd7df7187db46ab524b9af2515f392f337c7cbbf5b52cd"
],
"markers": "python_version >= '3.7'",
"version": "==1.20.2"
},
"pandas": {
"hashes": [
"sha256:167693a80abc8eb28051fbd184c1b7afd13ce2c727a5af47b048f1ea3afefff4",
"sha256:2111c25e69fa9365ba80bbf4f959400054b2771ac5d041ed19415a8b488dc70a",
"sha256:298f0553fd3ba8e002c4070a723a59cdb28eda579f3e243bc2ee397773f5398b",
"sha256:2b063d41803b6a19703b845609c0b700913593de067b552a8b24dd8eeb8c9895",
"sha256:2cb7e8f4f152f27dc93f30b5c7a98f6c748601ea65da359af734dd0cf3fa733f",
"sha256:52d2472acbb8a56819a87aafdb8b5b6d2b3386e15c95bde56b281882529a7ded",
"sha256:612add929bf3ba9d27b436cc8853f5acc337242d6b584203f207e364bb46cb12",
"sha256:649ecab692fade3cbfcf967ff936496b0cfba0af00a55dfaacd82bdda5cb2279",
"sha256:68d7baa80c74aaacbed597265ca2308f017859123231542ff8a5266d489e1858",
"sha256:8d4c74177c26aadcfb4fd1de6c1c43c2bf822b3e0fc7a9b409eeaf84b3e92aaa",
"sha256:971e2a414fce20cc5331fe791153513d076814d30a60cd7348466943e6e909e4",
"sha256:9db70ffa8b280bb4de83f9739d514cd0735825e79eef3a61d312420b9f16b758",
"sha256:b730add5267f873b3383c18cac4df2527ac4f0f0eed1c6cf37fcb437e25cf558",
"sha256:bd659c11a4578af740782288cac141a322057a2e36920016e0fc7b25c5a4b686",
"sha256:c601c6fdebc729df4438ec1f62275d6136a0dd14d332fc0e8ce3f7d2aadb4dd6",
"sha256:d0877407359811f7b853b548a614aacd7dea83b0c0c84620a9a643f180060950"
],
"index": "pypi",
"version": "==1.2.4"
},
"prompt-toolkit": {
"hashes": [
"sha256:bf00f22079f5fadc949f42ae8ff7f05702826a97059ffcc6281036ad40ac6f04",
"sha256:e1b4f11b9336a28fa11810bc623c357420f69dfdb6d2dac41ca2c21a55c033bc"
],
"markers": "python_full_version >= '3.6.1'",
"version": "==3.0.18"
},
"pymysql": {
"hashes": [
"sha256:41fc3a0c5013d5f039639442321185532e3e2c8924687abe6537de157d403641",
"sha256:816927a350f38d56072aeca5dfb10221fe1dc653745853d30a216637f5d7ad36"
],
"index": "pypi",
"version": "==1.0.2"
},
"python-dateutil": {
"hashes": [
"sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c",
"sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
"version": "==2.8.1"
},
"pytz": {
"hashes": [
"sha256:83a4a90894bf38e243cf052c8b58f381bfe9a7a483f6a9cab140bc7f702ac4da",
"sha256:eb10ce3e7736052ed3623d49975ce333bcd712c7bb19a58b9e2089d4057d0798"
],
"version": "==2021.1"
},
"requests": {
"hashes": [
"sha256:27973dd4a904a4f13b263a19c866c13b92a39ed1c964655f025f3f8d3d75b804",
"sha256:c210084e36a42ae6b9219e00e48287def368a26d03a048ddad7bfee44f75871e"
],
"index": "pypi",
"version": "==2.25.1"
},
"six": {
"hashes": [
"sha256:30639c035cdb23534cd4aa2dd52c3bf48f06e5f4a941509c8bafd8ce11080259",
"sha256:8b74bedcbbbaca38ff6d7491d76f2b06b3592611af620f8426e82dddb04a5ced"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
"version": "==1.15.0"
},
"sqlalchemy": {
"hashes": [
"sha256:0140f6dac2659fa6783e7029085ab0447d8eb23cf4d831fb907588d27ba158f7",
"sha256:034b42a6a59bf4ddc57e5a38a9dbac83ccd94c0b565ba91dba4ff58149706028",
"sha256:03a503ecff0cc2be3ad4dafd220eaff13721edb11c191670b7662932fb0a5c3a",
"sha256:069de3a701d33709236efe0d06f38846b738b19c63d45cc47f54590982ba7802",
"sha256:1735e06a3d5b0793d5ee2d952df8a5c63edaff6383c2210c9b5c93dc2ea4c315",
"sha256:19633df6be629200ff3c026f2837e1dd17908fb1bcea860290a5a45e6fa5148e",
"sha256:1e14fa32969badef9c309f55352e5c46f321bd29f7c600556caacdaa3eddfcf6",
"sha256:31e941d6db8b026bc63e46ef71e877913f128bd44260b90c645432626b7f9a47",
"sha256:452c4e002be727cb6f929dbd32bbc666a0921b86555b8af09709060ed3954bd3",
"sha256:45a720029756800628359192630fffdc9660ab6f27f0409bd24d9e09d75d6c18",
"sha256:4a2e7f037d3ca818d6d0490e3323fd451545f580df30d62b698da2f247015a34",
"sha256:4a7d4da2acf6d5d068fb41c48950827c49c3c68bfb46a1da45ea8fbf7ed4b471",
"sha256:4ad4044eb86fbcbdff2106e44f479fbdac703d77860b3e19988c8a8786e73061",
"sha256:4f631edf45a943738fa77612e85fc5c5d3fb637c4f5a530f7eedd1a7cd7a70a7",
"sha256:6389b10e23329dc8b5600c1a84e3da2628d0f437d8a5cd05aefd1470ec571dd1",
"sha256:6ebd58e73b7bd902688c0bb8dbabb0c36b756f02cc7b27ad5efa2f380c611f95",
"sha256:7180830ea1082b96b94884bc352b274e29b45151b6ee911bf1fd79cba2de659b",
"sha256:789be639501445d85fd4ca41d04f0f5c6cbb6deb0c6826aaa6f22774fe84ef94",
"sha256:7d89add44938ea4f52c7641d5805c9e154fed4381e874ef3221483eeb191a96d",
"sha256:842b0d4698381aac047f8ae57409c90b7e63ebabf5bc02814ddc8eaefd13499e",
"sha256:8f96d4b6a49d3f0f109365bb6303ae5d266d3f90280ca68cf8b2c46032491038",
"sha256:961b089e64c2ad29ad367487dd3ba1aa3eeba56bc82037ce91732baaa0f6ca90",
"sha256:96de1d4a2e05d4a017087cb29cd6a8ebfeecfd0e9f872880b1a589f011c1c02e",
"sha256:98214f04802a3fc740038744d8981a8f2fdca710f791ca125fc4792737d9f3a7",
"sha256:9cf94161cb55507cee147bf8abcfd3c076b353ad18743296764dd81108ea74f8",
"sha256:9fdf0713166f33e5e6ea98cf59deb305cb323131277f6880de6c509f468076f8",
"sha256:a41ab83ecfadf38a47bdfaf4e488f71579df47a711e1ab1dce30d34c7c25bd00",
"sha256:ac14fee167653ec6dee32d6aa4d501d90ae1bfbbc3eb5816940bccf227f0d617",
"sha256:b8b7d66ee8b8ac272adce0af1342a60854f0d89686e6d3318127a6a82a2f765c",
"sha256:bb1072fdf48ba870c0fe81bee8babe4ba2f096fb56bb4f3e0c2386a7626e405c",
"sha256:cd823071b97c1a6ac3af9e43b5d861126a1304033dcd18dfe354a02ec45642fe",
"sha256:d08173144aebdf30c21a331b532db16535cfa83deed12e8703fa6c67c0894ffc",
"sha256:e7d76312e904aa4ea221a92c0bc2e299ad46e4580e2d72ca1f7e6d31dce5bfab",
"sha256:f772e4428d413c0affe2a34836278fbe9df9a9c0940705860c2d3a4b50af1a66"
],
"index": "pypi",
"version": "==1.4.11"
},
"tasks": {
"hashes": [
"sha256:94719dccc369129c4e626486cc0e681ae3d3b4d631d9a60cb66c7fd7f351e711",
"sha256:f5a387c728dbee5017b35802754598fc872a5b0f2bf01422dce216182ad73d4f"
],
"index": "pypi",
"version": "==2.7.0"
},
"tornado": {
"hashes": [
"sha256:0a00ff4561e2929a2c37ce706cb8233b7907e0cdc22eab98888aca5dd3775feb",
"sha256:0d321a39c36e5f2c4ff12b4ed58d41390460f798422c4504e09eb5678e09998c",
"sha256:1e8225a1070cd8eec59a996c43229fe8f95689cb16e552d130b9793cb570a288",
"sha256:20241b3cb4f425e971cb0a8e4ffc9b0a861530ae3c52f2b0434e6c1b57e9fd95",
"sha256:25ad220258349a12ae87ede08a7b04aca51237721f63b1808d39bdb4b2164558",
"sha256:33892118b165401f291070100d6d09359ca74addda679b60390b09f8ef325ffe",
"sha256:33c6e81d7bd55b468d2e793517c909b139960b6c790a60b7991b9b6b76fb9791",
"sha256:3447475585bae2e77ecb832fc0300c3695516a47d46cefa0528181a34c5b9d3d",
"sha256:34ca2dac9e4d7afb0bed4677512e36a52f09caa6fded70b4e3e1c89dbd92c326",
"sha256:3e63498f680547ed24d2c71e6497f24bca791aca2fe116dbc2bd0ac7f191691b",
"sha256:548430be2740e327b3fe0201abe471f314741efcb0067ec4f2d7dcfb4825f3e4",
"sha256:6196a5c39286cc37c024cd78834fb9345e464525d8991c21e908cc046d1cc02c",
"sha256:61b32d06ae8a036a6607805e6720ef00a3c98207038444ba7fd3d169cd998910",
"sha256:6286efab1ed6e74b7028327365cf7346b1d777d63ab30e21a0f4d5b275fc17d5",
"sha256:65d98939f1a2e74b58839f8c4dab3b6b3c1ce84972ae712be02845e65391ac7c",
"sha256:66324e4e1beede9ac79e60f88de548da58b1f8ab4b2f1354d8375774f997e6c0",
"sha256:6c77c9937962577a6a76917845d06af6ab9197702a42e1346d8ae2e76b5e3675",
"sha256:70dec29e8ac485dbf57481baee40781c63e381bebea080991893cd297742b8fd",
"sha256:7250a3fa399f08ec9cb3f7b1b987955d17e044f1ade821b32e5f435130250d7f",
"sha256:748290bf9112b581c525e6e6d3820621ff020ed95af6f17fedef416b27ed564c",
"sha256:7da13da6f985aab7f6f28debab00c67ff9cbacd588e8477034c0652ac141feea",
"sha256:8f959b26f2634a091bb42241c3ed8d3cedb506e7c27b8dd5c7b9f745318ddbb6",
"sha256:9de9e5188a782be6b1ce866e8a51bc76a0fbaa0e16613823fc38e4fc2556ad05",
"sha256:a48900ecea1cbb71b8c71c620dee15b62f85f7c14189bdeee54966fbd9a0c5bd",
"sha256:b87936fd2c317b6ee08a5741ea06b9d11a6074ef4cc42e031bc6403f82a32575",
"sha256:c77da1263aa361938476f04c4b6c8916001b90b2c2fdd92d8d535e1af48fba5a",
"sha256:cb5ec8eead331e3bb4ce8066cf06d2dfef1bfb1b2a73082dfe8a161301b76e37",
"sha256:cc0ee35043162abbf717b7df924597ade8e5395e7b66d18270116f8745ceb795",
"sha256:d14d30e7f46a0476efb0deb5b61343b1526f73ebb5ed84f23dc794bdb88f9d9f",
"sha256:d371e811d6b156d82aa5f9a4e08b58debf97c302a35714f6f45e35139c332e32",
"sha256:d3d20ea5782ba63ed13bc2b8c291a053c8d807a8fa927d941bd718468f7b950c",
"sha256:d3f7594930c423fd9f5d1a76bee85a2c36fd8b4b16921cae7e965f22575e9c01",
"sha256:dcef026f608f678c118779cd6591c8af6e9b4155c44e0d1bc0c87c036fb8c8c4",
"sha256:e0791ac58d91ac58f694d8d2957884df8e4e2f6687cdf367ef7eb7497f79eaa2",
"sha256:e385b637ac3acaae8022e7e47dfa7b83d3620e432e3ecb9a3f7f58f150e50921",
"sha256:e519d64089b0876c7b467274468709dadf11e41d65f63bba207e04217f47c085",
"sha256:e7229e60ac41a1202444497ddde70a48d33909e484f96eb0da9baf8dc68541df",
"sha256:ed3ad863b1b40cd1d4bd21e7498329ccaece75db5a5bf58cd3c9f130843e7102",
"sha256:f0ba29bafd8e7e22920567ce0d232c26d4d47c8b5cf4ed7b562b5db39fa199c5",
"sha256:fa2ba70284fa42c2a5ecb35e322e68823288a4251f9ba9cc77be04ae15eada68",
"sha256:fba85b6cd9c39be262fcd23865652920832b61583de2a2ca907dbd8e8a8c81e5"
],
"index": "pypi",
"version": "==6.1"
},
"tornado-sqlalchemy": {
"hashes": [
"sha256:d21527a06821c0d9b06cf5e87f3ca2fb6a665db2787b7b6576d225a01633cab9",
"sha256:f37e59c376aa7661beb96992977c64e6b0baf5cbe74c41ccc0bf3b25dee0e637"
],
"index": "pypi",
"version": "==0.7.0"
},
"tqdm": {
"hashes": [
"sha256:daec693491c52e9498632dfbe9ccfc4882a557f5fa08982db1b4d3adbe0887c3",
"sha256:ebdebdb95e3477ceea267decfc0784859aa3df3e27e22d23b83e9b272bf157ae"
],
"index": "pypi",
"version": "==4.60.0"
},
"typing-extensions": {
"hashes": [
"sha256:7cb407020f00f7bfc3cb3e7881628838e69d8f3fcab2f64742a5e76b2f841918",
"sha256:99d4073b617d30288f569d3f13d2bd7548c3a7e4c8de87db09a9d29bb3a4a60c",
"sha256:dafc7639cde7f1b6e1acc0f457842a83e722ccca8eef5270af2d74792619a89f"
],
"markers": "python_version < '3.8'",
"version": "==3.7.4.3"
},
"urllib3": {
"hashes": [
"sha256:2f4da4594db7e1e110a944bb1b551fdf4e6c136ad42e4234131391e21eb5b0df",
"sha256:e7b021f7241115872f92f43c6508082facffbd1c048e3c6e2bb9c2a157e28937"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4' and python_version < '4.0'",
"version": "==1.26.4"
},
"vine": {
"hashes": [
"sha256:4c9dceab6f76ed92105027c49c823800dd33cacce13bdedc5b914e3514b7fb30",
"sha256:7d3b1624a953da82ef63462013bbd271d3eb75751489f9807598e8f340bd637e"
],
"markers": "python_version >= '3.6'",
"version": "==5.0.0"
},
"wcwidth": {
"hashes": [
"sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784",
"sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83"
],
"version": "==0.2.5"
},
"zipp": {
"hashes": [
"sha256:3607921face881ba3e026887d8150cca609d517579abe052ac81fc5aeffdbd76",
"sha256:51cb66cc54621609dd593d1787f286ee42a5c0adbb4b29abea5a63edc3e03098"
],
"markers": "python_version >= '3.6'",
"version": "==3.4.1"
}
},
"develop": {}
}
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
[2021-04-26 14:46:51 web.py:log_request:2243 WARNING] 405 GET /api/model/exec (192.168.29.38) 49.35ms
[2021-04-26 14:46:56 web.py:log_request:2243 INFO] 200 POST /api/model/exec (192.168.29.38) 7.01ms
[2021-04-26 14:50:24 web.py:log_request:2243 INFO] 200 POST /api/model/exec (192.168.29.38) 9.25ms
[2021-04-26 15:43:17 web.py:log_request:2243 WARNING] 405 GET /api/automatic (::1) 30.24ms
[2021-04-26 15:43:22 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-26 15:43:22 log.py:info:117 INFO] [raw sql] {}
[2021-04-26 15:43:22 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-26 15:43:22 log.py:info:117 INFO] [generated in 0.00050s] {}
[2021-04-26 15:43:22 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-26 15:43:22 log.py:info:117 INFO] [raw sql] {}
[2021-04-26 15:43:22 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:22 log.py:info:117 INFO] SELECT models_datail.id AS models_datail_id, models_datail.name AS models_datail_name, models_datail.content AS models_datail_content, models_datail.create_name AS models_datail_create_name, models_datail.el_expression AS models_datail_el_expression, models_datail.create_at AS models_datail_create_at, models_datail.update_at AS models_datail_update_at
FROM models_datail
WHERE models_datail.name = %(name_1)s
[2021-04-26 15:43:22 log.py:info:117 INFO] [generated in 0.00044s] {'name_1': 'fst_assemble_flx_v8_score'}
[2021-04-26 15:43:23 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-26 15:43:23 log.py:info:117 INFO] [raw sql] {}
[2021-04-26 15:43:23 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-26 15:43:23 log.py:info:117 INFO] [generated in 0.00044s] {}
[2021-04-26 15:43:23 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-26 15:43:23 log.py:info:117 INFO] [raw sql] {}
[2021-04-26 15:43:23 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:23 log.py:info:117 INFO] SELECT assert_datail.assert_name AS assert_datail_assert_name, assert_datail.assert_content AS assert_datail_assert_content, assert_datail.assert_type AS assert_datail_assert_type, assert_datail.assert_value AS assert_datail_assert_value, assert_datail.assert_gdp AS assert_datail_assert_gdp, assert_datail.data_type AS assert_datail_data_type, assert_datail.data_round AS assert_datail_data_round
FROM assert_datail
WHERE assert_datail.assert_name = %(assert_name_1)s
[2021-04-26 15:43:23 log.py:info:117 INFO] [generated in 0.00049s] {'assert_name_1': '模型测试'}
[2021-04-26 15:43:23 log.py:info:117 INFO] SELECT assert_datail.assert_name AS assert_datail_assert_name, assert_datail.assert_content AS assert_datail_assert_content, assert_datail.assert_type AS assert_datail_assert_type, assert_datail.assert_value AS assert_datail_assert_value, assert_datail.assert_gdp AS assert_datail_assert_gdp, assert_datail.data_type AS assert_datail_data_type, assert_datail.data_round AS assert_datail_data_round
FROM assert_datail
WHERE assert_datail.assert_name = %(assert_name_1)s
[2021-04-26 15:43:23 log.py:info:117 INFO] [cached since 0.01349s ago] {'assert_name_1': '模型测试'}
[2021-04-26 15:43:23 log.py:info:117 INFO] SELECT assert_datail.assert_name AS assert_datail_assert_name, assert_datail.assert_content AS assert_datail_assert_content, assert_datail.assert_type AS assert_datail_assert_type, assert_datail.assert_value AS assert_datail_assert_value, assert_datail.assert_gdp AS assert_datail_assert_gdp, assert_datail.data_type AS assert_datail_data_type, assert_datail.data_round AS assert_datail_data_round
FROM assert_datail
WHERE assert_datail.assert_name = %(assert_name_1)s
[2021-04-26 15:43:23 log.py:info:117 INFO] [cached since 0.02663s ago] {'assert_name_1': '模型测试'}
[2021-04-26 15:43:23 log.py:info:117 INFO] SELECT assert_datail.assert_name AS assert_datail_assert_name, assert_datail.assert_content AS assert_datail_assert_content, assert_datail.assert_type AS assert_datail_assert_type, assert_datail.assert_value AS assert_datail_assert_value, assert_datail.assert_gdp AS assert_datail_assert_gdp, assert_datail.data_type AS assert_datail_data_type, assert_datail.data_round AS assert_datail_data_round
FROM assert_datail
WHERE assert_datail.assert_name = %(assert_name_1)s
[2021-04-26 15:43:23 log.py:info:117 INFO] [cached since 0.05768s ago] {'assert_name_1': '模型测试'}
[2021-04-26 15:43:23 log.py:info:117 INFO] SELECT assert_datail.assert_name AS assert_datail_assert_name, assert_datail.assert_content AS assert_datail_assert_content, assert_datail.assert_type AS assert_datail_assert_type, assert_datail.assert_value AS assert_datail_assert_value, assert_datail.assert_gdp AS assert_datail_assert_gdp, assert_datail.data_type AS assert_datail_data_type, assert_datail.data_round AS assert_datail_data_round
FROM assert_datail
WHERE assert_datail.assert_name = %(assert_name_1)s
[2021-04-26 15:43:23 log.py:info:117 INFO] [cached since 0.06918s ago] {'assert_name_1': '模型测试'}
[2021-04-26 15:43:23 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:23 log.py:info:117 INFO] [generated in 0.00036s] {'feature_name_1': 'third_data_source#pinTai_tb_score3'}
[2021-04-26 15:43:23 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:23 log.py:info:117 INFO] [generated in 0.00033s] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 23, 727561), 'feature_name_1': 'third_data_source#pinTai_tb_score3', 'is_active_1': 1}
[2021-04-26 15:43:23 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:24 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:24 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 0.385s ago] {'feature_name_1': 'third_data_source#pinTai_tb_score3'}
[2021-04-26 15:43:24 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 0.3777s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 24, 105923), 'feature_name_1': 'third_data_source#pinTai_tb_score3', 'is_active_1': 1}
[2021-04-26 15:43:24 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:24 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:24 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 0.4587s ago] {'feature_name_1': 'third_data_source#pinTai_tb_score3'}
[2021-04-26 15:43:24 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 0.4512s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 24, 179467), 'feature_name_1': 'third_data_source#pinTai_tb_score3', 'is_active_1': 1}
[2021-04-26 15:43:24 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:24 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:24 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 0.5253s ago] {'feature_name_1': 'third_data_source#pinTai_tb_score3'}
[2021-04-26 15:43:24 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 0.5184s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 24, 246670), 'feature_name_1': 'third_data_source#pinTai_tb_score3', 'is_active_1': 1}
[2021-04-26 15:43:24 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:24 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:24 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 0.8848s ago] {'feature_name_1': 'third_data_source#pinTai_tb_score3'}
[2021-04-26 15:43:24 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 0.8751s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 24, 603257), 'feature_name_1': 'third_data_source#pinTai_tb_score3', 'is_active_1': 1}
[2021-04-26 15:43:24 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:24 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:24 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 0.9766s ago] {'feature_name_1': 'third_data_source#pinTai_tb_score3'}
[2021-04-26 15:43:24 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 0.9675s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 24, 695586), 'feature_name_1': 'third_data_source#pinTai_tb_score3', 'is_active_1': 1}
[2021-04-26 15:43:24 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:24 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:24 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 1.059s ago] {'feature_name_1': 'third_data_source#pinTai_tb_score3'}
[2021-04-26 15:43:24 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 1.052s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 24, 779798), 'feature_name_1': 'third_data_source#pinTai_tb_score3', 'is_active_1': 1}
[2021-04-26 15:43:24 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:24 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:24 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:24 log.py:info:117 INFO] [cached since 1.12s ago] {'feature_name_1': 'third_data_source#tc_universal_model_score'}
[2021-04-26 15:43:25 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.33s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 25, 58558), 'feature_name_1': 'third_data_source#tc_universal_model_score', 'is_active_1': 1}
[2021-04-26 15:43:25 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:25 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:25 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.409s ago] {'feature_name_1': 'third_data_source#tc_universal_model_score'}
[2021-04-26 15:43:25 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.399s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 25, 127108), 'feature_name_1': 'third_data_source#tc_universal_model_score', 'is_active_1': 1}
[2021-04-26 15:43:25 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:25 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:25 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.466s ago] {'feature_name_1': 'third_data_source#tc_universal_model_score'}
[2021-04-26 15:43:25 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.484s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 25, 212305), 'feature_name_1': 'third_data_source#tc_universal_model_score', 'is_active_1': 1}
[2021-04-26 15:43:25 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:25 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:25 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.553s ago] {'feature_name_1': 'third_data_source#tc_universal_model_score'}
[2021-04-26 15:43:25 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.545s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 25, 273010), 'feature_name_1': 'third_data_source#tc_universal_model_score', 'is_active_1': 1}
[2021-04-26 15:43:25 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:25 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:25 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.613s ago] {'feature_name_1': 'third_data_source#tc_universal_model_score'}
[2021-04-26 15:43:25 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.601s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 25, 329437), 'feature_name_1': 'third_data_source#tc_universal_model_score', 'is_active_1': 1}
[2021-04-26 15:43:25 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:25 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:25 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.889s ago] {'feature_name_1': 'third_data_source#tc_universal_model_score'}
[2021-04-26 15:43:25 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.877s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 25, 605364), 'feature_name_1': 'third_data_source#tc_universal_model_score', 'is_active_1': 1}
[2021-04-26 15:43:25 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:25 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:25 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.965s ago] {'feature_name_1': 'third_data_source#tc_universal_model_score'}
[2021-04-26 15:43:25 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 1.954s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 25, 682567), 'feature_name_1': 'third_data_source#tc_universal_model_score', 'is_active_1': 1}
[2021-04-26 15:43:25 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:25 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:25 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 2.021s ago] {'feature_name_1': 'third_data_source#xy_model3_score'}
[2021-04-26 15:43:25 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 2.012s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 25, 739884), 'feature_name_1': 'third_data_source#xy_model3_score', 'is_active_1': 1}
[2021-04-26 15:43:25 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:25 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:25 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 2.089s ago] {'feature_name_1': 'third_data_source#xy_model3_score'}
[2021-04-26 15:43:25 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 2.079s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 25, 807659), 'feature_name_1': 'third_data_source#xy_model3_score', 'is_active_1': 1}
[2021-04-26 15:43:25 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:25 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:25 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 2.149s ago] {'feature_name_1': 'third_data_source#xy_model3_score'}
[2021-04-26 15:43:25 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:25 log.py:info:117 INFO] [cached since 2.139s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 25, 867436), 'feature_name_1': 'third_data_source#xy_model3_score', 'is_active_1': 1}
[2021-04-26 15:43:26 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:26 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:26 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 2.634s ago] {'feature_name_1': 'third_data_source#xy_model3_score'}
[2021-04-26 15:43:26 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 2.622s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 26, 349804), 'feature_name_1': 'third_data_source#xy_model3_score', 'is_active_1': 1}
[2021-04-26 15:43:26 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:26 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:26 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 2.694s ago] {'feature_name_1': 'third_data_source#xy_model3_score'}
[2021-04-26 15:43:26 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 2.906s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 26, 634577), 'feature_name_1': 'third_data_source#xy_model3_score', 'is_active_1': 1}
[2021-04-26 15:43:26 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:26 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:26 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 2.974s ago] {'feature_name_1': 'third_data_source#xy_model3_score'}
[2021-04-26 15:43:26 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 2.964s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 26, 692270), 'feature_name_1': 'third_data_source#xy_model3_score', 'is_active_1': 1}
[2021-04-26 15:43:26 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:26 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:26 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 3.032s ago] {'feature_name_1': 'third_data_source#xy_model3_score'}
[2021-04-26 15:43:26 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 3.023s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 26, 751531), 'feature_name_1': 'third_data_source#xy_model3_score', 'is_active_1': 1}
[2021-04-26 15:43:26 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:26 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:26 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 3.113s ago] {'feature_name_1': 'third_data_source#td_fs_Fscore'}
[2021-04-26 15:43:26 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 3.102s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 26, 830633), 'feature_name_1': 'third_data_source#td_fs_Fscore', 'is_active_1': 1}
[2021-04-26 15:43:26 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:26 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:26 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 3.176s ago] {'feature_name_1': 'third_data_source#td_fs_Fscore'}
[2021-04-26 15:43:26 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:26 log.py:info:117 INFO] [cached since 3.171s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 26, 899279), 'feature_name_1': 'third_data_source#td_fs_Fscore', 'is_active_1': 1}
[2021-04-26 15:43:27 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:27 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:27 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 3.459s ago] {'feature_name_1': 'third_data_source#td_fs_Fscore'}
[2021-04-26 15:43:27 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 3.448s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 27, 175856), 'feature_name_1': 'third_data_source#td_fs_Fscore', 'is_active_1': 1}
[2021-04-26 15:43:27 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:27 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:27 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 3.545s ago] {'feature_name_1': 'third_data_source#td_fs_Fscore'}
[2021-04-26 15:43:27 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 3.534s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 27, 262411), 'feature_name_1': 'third_data_source#td_fs_Fscore', 'is_active_1': 1}
[2021-04-26 15:43:27 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:27 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:27 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 3.613s ago] {'feature_name_1': 'third_data_source#td_fs_Fscore'}
[2021-04-26 15:43:27 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 3.603s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 27, 331280), 'feature_name_1': 'third_data_source#td_fs_Fscore', 'is_active_1': 1}
[2021-04-26 15:43:27 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:27 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:27 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 3.672s ago] {'feature_name_1': 'third_data_source#td_fs_Fscore'}
[2021-04-26 15:43:27 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 3.663s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 27, 391315), 'feature_name_1': 'third_data_source#td_fs_Fscore', 'is_active_1': 1}
[2021-04-26 15:43:27 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:27 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:27 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 3.73s ago] {'feature_name_1': 'third_data_source#td_fs_Fscore'}
[2021-04-26 15:43:27 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 3.939s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 27, 667075), 'feature_name_1': 'third_data_source#td_fs_Fscore', 'is_active_1': 1}
[2021-04-26 15:43:27 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:27 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:27 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 4.024s ago] {'feature_name_1': 'third_data_source#brlhp_2_scorecust1'}
[2021-04-26 15:43:27 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 4.011s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 27, 738873), 'feature_name_1': 'third_data_source#brlhp_2_scorecust1', 'is_active_1': 1}
[2021-04-26 15:43:27 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:27 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:27 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 4.085s ago] {'feature_name_1': 'third_data_source#brlhp_2_scorecust1'}
[2021-04-26 15:43:27 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 4.084s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 27, 811679), 'feature_name_1': 'third_data_source#brlhp_2_scorecust1', 'is_active_1': 1}
[2021-04-26 15:43:27 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:27 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:27 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 4.151s ago] {'feature_name_1': 'third_data_source#brlhp_2_scorecust1'}
[2021-04-26 15:43:27 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 4.138s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 27, 866614), 'feature_name_1': 'third_data_source#brlhp_2_scorecust1', 'is_active_1': 1}
[2021-04-26 15:43:27 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:27 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:27 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 4.211s ago] {'feature_name_1': 'third_data_source#brlhp_2_scorecust1'}
[2021-04-26 15:43:27 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:27 log.py:info:117 INFO] [cached since 4.199s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 27, 927330), 'feature_name_1': 'third_data_source#brlhp_2_scorecust1', 'is_active_1': 1}
[2021-04-26 15:43:27 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:28 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:28 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 4.489s ago] {'feature_name_1': 'third_data_source#brlhp_2_scorecust1'}
[2021-04-26 15:43:28 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 4.474s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 28, 202496), 'feature_name_1': 'third_data_source#brlhp_2_scorecust1', 'is_active_1': 1}
[2021-04-26 15:43:28 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:28 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:28 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 4.543s ago] {'feature_name_1': 'third_data_source#brlhp_2_scorecust1'}
[2021-04-26 15:43:28 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 4.532s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 28, 260339), 'feature_name_1': 'third_data_source#brlhp_2_scorecust1', 'is_active_1': 1}
[2021-04-26 15:43:28 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:28 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:28 log.py:info:117 INFO] SELECT feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_content AS feature_detail_feature_content, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round, feature_detail.is_active AS feature_detail_is_active, feature_detail.create_at AS feature_detail_create_at, feature_detail.update_at AS feature_detail_update_at
FROM feature_detail
WHERE feature_detail.feature_name = %(feature_name_1)s
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 4.602s ago] {'feature_name_1': 'third_data_source#brlhp_2_scorecust1'}
[2021-04-26 15:43:28 log.py:info:117 INFO] UPDATE feature_detail SET is_active=%(is_active)s, update_at=%(update_at)s WHERE feature_detail.feature_name = %(feature_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 4.596s ago] {'is_active': 2, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 28, 324454), 'feature_name_1': 'third_data_source#brlhp_2_scorecust1', 'is_active_1': 1}
[2021-04-26 15:43:28 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:28 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [generated in 0.00033s] {'feature_name': 'third_data_source#pinTai_tb_score3', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': '1-100', 'feature_gdp': 20, 'data_type': 1, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.01072s ago] {'feature_name': 'third_data_source#pinTai_tb_score3', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': '0.1-1', 'feature_gdp': 15, 'data_type': 2, 'data_round': 6, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.02221s ago] {'feature_name': 'third_data_source#pinTai_tb_score3', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': None, 'feature_gdp': 15, 'data_type': 3, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.03608s ago] {'feature_name': 'third_data_source#pinTai_tb_score3', 'feature_content': '自动生成', 'feature_type': '异常', 'feature_value': '-9999999', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.04817s ago] {'feature_name': 'third_data_source#pinTai_tb_score3', 'feature_content': '自动生成', 'feature_type': '异常', 'feature_value': 'None', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.05947s ago] {'feature_name': 'third_data_source#pinTai_tb_score3', 'feature_content': '自动生成', 'feature_type': '字符串', 'feature_value': None, 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.09302s ago] {'feature_name': 'third_data_source#pinTai_tb_score3', 'feature_content': '自动生成', 'feature_type': '整数', 'feature_value': '0', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.3259s ago] {'feature_name': 'third_data_source#tc_universal_model_score', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': '1-100', 'feature_gdp': 20, 'data_type': 1, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.3375s ago] {'feature_name': 'third_data_source#tc_universal_model_score', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': '0.1-1', 'feature_gdp': 15, 'data_type': 2, 'data_round': 6, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.3493s ago] {'feature_name': 'third_data_source#tc_universal_model_score', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': None, 'feature_gdp': 15, 'data_type': 3, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.3611s ago] {'feature_name': 'third_data_source#tc_universal_model_score', 'feature_content': '自动生成', 'feature_type': '异常', 'feature_value': '-9999999', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:28 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:28 log.py:info:117 INFO] [cached since 0.3724s ago] {'feature_name': 'third_data_source#tc_universal_model_score', 'feature_content': '自动生成', 'feature_type': '异常', 'feature_value': 'None', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:29 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:29 log.py:info:117 INFO] [cached since 1.541s ago] {'feature_name': 'third_data_source#tc_universal_model_score', 'feature_content': '自动生成', 'feature_type': '字符串', 'feature_value': None, 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:29 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:29 log.py:info:117 INFO] [cached since 1.553s ago] {'feature_name': 'third_data_source#tc_universal_model_score', 'feature_content': '自动生成', 'feature_type': '整数', 'feature_value': '0', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:29 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:29 log.py:info:117 INFO] [cached since 1.564s ago] {'feature_name': 'third_data_source#xy_model3_score', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': '1-100', 'feature_gdp': 20, 'data_type': 1, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:29 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:29 log.py:info:117 INFO] [cached since 1.58s ago] {'feature_name': 'third_data_source#xy_model3_score', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': '0.1-1', 'feature_gdp': 15, 'data_type': 2, 'data_round': 6, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:29 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:29 log.py:info:117 INFO] [cached since 1.592s ago] {'feature_name': 'third_data_source#xy_model3_score', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': None, 'feature_gdp': 15, 'data_type': 3, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:29 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:29 log.py:info:117 INFO] [cached since 1.606s ago] {'feature_name': 'third_data_source#xy_model3_score', 'feature_content': '自动生成', 'feature_type': '异常', 'feature_value': '-9999999', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:29 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:29 log.py:info:117 INFO] [cached since 1.617s ago] {'feature_name': 'third_data_source#xy_model3_score', 'feature_content': '自动生成', 'feature_type': '异常', 'feature_value': 'None', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.631s ago] {'feature_name': 'third_data_source#xy_model3_score', 'feature_content': '自动生成', 'feature_type': '字符串', 'feature_value': None, 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.668s ago] {'feature_name': 'third_data_source#xy_model3_score', 'feature_content': '自动生成', 'feature_type': '整数', 'feature_value': '0', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.768s ago] {'feature_name': 'third_data_source#td_fs_Fscore', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': '1-100', 'feature_gdp': 20, 'data_type': 1, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.778s ago] {'feature_name': 'third_data_source#td_fs_Fscore', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': '0.1-1', 'feature_gdp': 15, 'data_type': 2, 'data_round': 6, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.789s ago] {'feature_name': 'third_data_source#td_fs_Fscore', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': None, 'feature_gdp': 15, 'data_type': 3, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.8s ago] {'feature_name': 'third_data_source#td_fs_Fscore', 'feature_content': '自动生成', 'feature_type': '异常', 'feature_value': '-9999999', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.81s ago] {'feature_name': 'third_data_source#td_fs_Fscore', 'feature_content': '自动生成', 'feature_type': '异常', 'feature_value': 'None', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.821s ago] {'feature_name': 'third_data_source#td_fs_Fscore', 'feature_content': '自动生成', 'feature_type': '字符串', 'feature_value': None, 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.831s ago] {'feature_name': 'third_data_source#td_fs_Fscore', 'feature_content': '自动生成', 'feature_type': '整数', 'feature_value': '0', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.842s ago] {'feature_name': 'third_data_source#brlhp_2_scorecust1', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': '1-100', 'feature_gdp': 20, 'data_type': 1, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.854s ago] {'feature_name': 'third_data_source#brlhp_2_scorecust1', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': '0.1-1', 'feature_gdp': 15, 'data_type': 2, 'data_round': 6, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.866s ago] {'feature_name': 'third_data_source#brlhp_2_scorecust1', 'feature_content': '自动生成', 'feature_type': '区间', 'feature_value': None, 'feature_gdp': 15, 'data_type': 3, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.877s ago] {'feature_name': 'third_data_source#brlhp_2_scorecust1', 'feature_content': '自动生成', 'feature_type': '异常', 'feature_value': '-9999999', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.888s ago] {'feature_name': 'third_data_source#brlhp_2_scorecust1', 'feature_content': '自动生成', 'feature_type': '异常', 'feature_value': 'None', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.906s ago] {'feature_name': 'third_data_source#brlhp_2_scorecust1', 'feature_content': '自动生成', 'feature_type': '字符串', 'feature_value': None, 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] INSERT INTO feature_detail (feature_name, feature_content, feature_type, feature_value, feature_gdp, data_type, data_round, is_active, create_at, update_at) VALUES (%(feature_name)s, %(feature_content)s, %(feature_type)s, %(feature_value)s, %(feature_gdp)s, %(data_type)s, %(data_round)s, %(is_active)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 1.921s ago] {'feature_name': 'third_data_source#brlhp_2_scorecust1', 'feature_content': '自动生成', 'feature_type': '整数', 'feature_value': '0', 'feature_gdp': 10, 'data_type': 0, 'data_round': 0, 'is_active': 1, 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685235), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 685264)}
[2021-04-26 15:43:30 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:30 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-26 15:43:30 log.py:info:117 INFO] [raw sql] {}
[2021-04-26 15:43:30 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-26 15:43:30 log.py:info:117 INFO] [generated in 0.00027s] {}
[2021-04-26 15:43:30 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-26 15:43:30 log.py:info:117 INFO] [raw sql] {}
[2021-04-26 15:43:30 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:30 log.py:info:117 INFO] SELECT data_set.id AS data_set_id, data_set.model_name AS data_set_model_name, data_set.user_count AS data_set_user_count, data_set.feature_name AS data_set_feature_name, data_set.create_at AS data_set_create_at, data_set.update_at AS data_set_update_at
FROM data_set
WHERE data_set.model_name = %(model_name_1)s AND data_set.feature_name = %(feature_name_1)s
LIMIT %(param_1)s
[2021-04-26 15:43:30 log.py:info:117 INFO] [generated in 0.00093s] {'model_name_1': 'fst_assemble_flx_v8_score', 'feature_name_1': 'third_data_source#pinTai_tb_score3', 'param_1': 1}
[2021-04-26 15:43:30 log.py:info:117 INFO] UPDATE data_set SET user_count=%(user_count)s, update_at=%(update_at)s WHERE data_set.model_name = %(model_name_1)s AND data_set.feature_name = %(feature_name_1)s
[2021-04-26 15:43:30 log.py:info:117 INFO] [generated in 0.00057s] {'user_count': 1, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 30, 525229), 'model_name_1': 'fst_assemble_flx_v8_score', 'feature_name_1': 'third_data_source#pinTai_tb_score3'}
[2021-04-26 15:43:30 log.py:info:117 INFO] SELECT data_set.id AS data_set_id, data_set.model_name AS data_set_model_name, data_set.user_count AS data_set_user_count, data_set.feature_name AS data_set_feature_name, data_set.create_at AS data_set_create_at, data_set.update_at AS data_set_update_at
FROM data_set
WHERE data_set.model_name = %(model_name_1)s AND data_set.feature_name = %(feature_name_1)s
LIMIT %(param_1)s
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 0.02714s ago] {'model_name_1': 'fst_assemble_flx_v8_score', 'feature_name_1': 'third_data_source#tc_universal_model_score', 'param_1': 1}
[2021-04-26 15:43:30 log.py:info:117 INFO] UPDATE data_set SET user_count=%(user_count)s, update_at=%(update_at)s WHERE data_set.model_name = %(model_name_1)s AND data_set.feature_name = %(feature_name_1)s
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 0.02416s ago] {'user_count': 1, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 30, 550355), 'model_name_1': 'fst_assemble_flx_v8_score', 'feature_name_1': 'third_data_source#tc_universal_model_score'}
[2021-04-26 15:43:30 log.py:info:117 INFO] SELECT data_set.id AS data_set_id, data_set.model_name AS data_set_model_name, data_set.user_count AS data_set_user_count, data_set.feature_name AS data_set_feature_name, data_set.create_at AS data_set_create_at, data_set.update_at AS data_set_update_at
FROM data_set
WHERE data_set.model_name = %(model_name_1)s AND data_set.feature_name = %(feature_name_1)s
LIMIT %(param_1)s
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 0.04953s ago] {'model_name_1': 'fst_assemble_flx_v8_score', 'feature_name_1': 'third_data_source#xy_model3_score', 'param_1': 1}
[2021-04-26 15:43:30 log.py:info:117 INFO] UPDATE data_set SET user_count=%(user_count)s, update_at=%(update_at)s WHERE data_set.model_name = %(model_name_1)s AND data_set.feature_name = %(feature_name_1)s
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 0.04939s ago] {'user_count': 1, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 30, 575419), 'model_name_1': 'fst_assemble_flx_v8_score', 'feature_name_1': 'third_data_source#xy_model3_score'}
[2021-04-26 15:43:30 log.py:info:117 INFO] SELECT data_set.id AS data_set_id, data_set.model_name AS data_set_model_name, data_set.user_count AS data_set_user_count, data_set.feature_name AS data_set_feature_name, data_set.create_at AS data_set_create_at, data_set.update_at AS data_set_update_at
FROM data_set
WHERE data_set.model_name = %(model_name_1)s AND data_set.feature_name = %(feature_name_1)s
LIMIT %(param_1)s
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 0.2907s ago] {'model_name_1': 'fst_assemble_flx_v8_score', 'feature_name_1': 'third_data_source#td_fs_Fscore', 'param_1': 1}
[2021-04-26 15:43:30 log.py:info:117 INFO] UPDATE data_set SET user_count=%(user_count)s, update_at=%(update_at)s WHERE data_set.model_name = %(model_name_1)s AND data_set.feature_name = %(feature_name_1)s
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 0.3149s ago] {'user_count': 1, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 30, 841020), 'model_name_1': 'fst_assemble_flx_v8_score', 'feature_name_1': 'third_data_source#td_fs_Fscore'}
[2021-04-26 15:43:30 log.py:info:117 INFO] SELECT data_set.id AS data_set_id, data_set.model_name AS data_set_model_name, data_set.user_count AS data_set_user_count, data_set.feature_name AS data_set_feature_name, data_set.create_at AS data_set_create_at, data_set.update_at AS data_set_update_at
FROM data_set
WHERE data_set.model_name = %(model_name_1)s AND data_set.feature_name = %(feature_name_1)s
LIMIT %(param_1)s
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 0.3419s ago] {'model_name_1': 'fst_assemble_flx_v8_score', 'feature_name_1': 'third_data_source#brlhp_2_scorecust1', 'param_1': 1}
[2021-04-26 15:43:30 log.py:info:117 INFO] UPDATE data_set SET user_count=%(user_count)s, update_at=%(update_at)s WHERE data_set.model_name = %(model_name_1)s AND data_set.feature_name = %(feature_name_1)s
[2021-04-26 15:43:30 log.py:info:117 INFO] [cached since 0.3408s ago] {'user_count': 1, 'update_at': datetime.datetime(2021, 4, 26, 15, 43, 30, 866569), 'model_name_1': 'fst_assemble_flx_v8_score', 'feature_name_1': 'third_data_source#brlhp_2_scorecust1'}
[2021-04-26 15:43:30 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:30 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-26 15:43:30 log.py:info:117 INFO] [raw sql] {}
[2021-04-26 15:43:30 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-26 15:43:30 log.py:info:117 INFO] [generated in 0.00052s] {}
[2021-04-26 15:43:30 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-26 15:43:30 log.py:info:117 INFO] [raw sql] {}
[2021-04-26 15:43:31 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:31 log.py:info:117 INFO] SELECT data_set.model_name AS data_set_model_name, models_datail.id AS model_id, data_set.user_count AS data_set_user_count, feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round
FROM data_set INNER JOIN feature_detail ON data_set.feature_name = feature_detail.feature_name INNER JOIN models_datail ON models_datail.name = data_set.model_name
WHERE data_set.model_name = %(model_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-26 15:43:31 log.py:info:117 INFO] [generated in 0.00040s] {'model_name_1': 'fst_assemble_flx_v8_score', 'is_active_1': 1}
[2021-04-26 15:43:31 log.py:info:117 INFO] INSERT INTO data_set_datail (model_id, model_name, user_count, feature_name, report_type, data_path, create_at, update_at) VALUES (%(model_id)s, %(model_name)s, %(user_count)s, %(feature_name)s, %(report_type)s, %(data_path)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:31 log.py:info:117 INFO] [generated in 0.00038s] {'model_id': 38, 'model_name': 'fst_assemble_flx_v8_score', 'user_count': 1, 'feature_name': 'third_data_source#brlhp_2_scorecust1,third_data_source#pinTai_tb_score3,third_data_source#xy_model3_score,third_data_source#td_fs_Fscore,third_data_source#tc_universal_model_score', 'report_type': 1, 'data_path': 'suite/fst_assemble_flx_v8_score/2021-04-26 15-43-31-095100/data/data_fst_assemble_flx_v8_score.json', 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 691718), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 691749)}
[2021-04-26 15:43:31 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:31 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:31 log.py:info:117 INFO] INSERT INTO data_set_datail (model_id, model_name, user_count, feature_name, report_type, data_path, create_at, update_at) VALUES (%(model_id)s, %(model_name)s, %(user_count)s, %(feature_name)s, %(report_type)s, %(data_path)s, %(create_at)s, %(update_at)s)
[2021-04-26 15:43:31 log.py:info:117 INFO] [cached since 0.1187s ago] {'model_id': 38, 'model_name': 'fst_assemble_flx_v8_score', 'user_count': 1, 'feature_name': 'third_data_source#brlhp_2_scorecust1,third_data_source#pinTai_tb_score3,third_data_source#xy_model3_score,third_data_source#td_fs_Fscore,third_data_source#tc_universal_model_score', 'report_type': 2, 'data_path': 'suite/fst_assemble_flx_v8_score/2021-04-26 15-43-31-095100/detail/detail_fst_assemble_flx_v8_score.json', 'create_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 691718), 'update_at': datetime.datetime(2021, 4, 26, 14, 47, 30, 691749)}
[2021-04-26 15:43:31 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:31 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:31 log.py:info:117 INFO] SELECT data_set_datail.id AS data_set_datail_id, data_set_datail.model_id AS data_set_datail_model_id, data_set_datail.model_name AS data_set_datail_model_name, data_set_datail.user_count AS data_set_datail_user_count, data_set_datail.feature_name AS data_set_datail_feature_name, data_set_datail.report_type AS data_set_datail_report_type, data_set_datail.data_path AS data_set_datail_data_path, data_set_datail.create_at AS data_set_datail_create_at, data_set_datail.update_at AS data_set_datail_update_at
FROM data_set_datail
WHERE data_set_datail.model_name = %(model_name_1)s AND data_set_datail.data_path = %(data_path_1)s AND data_set_datail.report_type = %(report_type_1)s
[2021-04-26 15:43:31 log.py:info:117 INFO] [generated in 0.00028s] {'model_name_1': 'fst_assemble_flx_v8_score', 'data_path_1': 'suite/fst_assemble_flx_v8_score/2021-04-26 15-43-31-095100/detail/detail_fst_assemble_flx_v8_score.json', 'report_type_1': 2}
[2021-04-26 15:43:31 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-26 15:43:31 log.py:info:117 INFO] [raw sql] {}
[2021-04-26 15:43:31 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-26 15:43:31 log.py:info:117 INFO] [generated in 0.00044s] {}
[2021-04-26 15:43:31 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-26 15:43:31 log.py:info:117 INFO] [raw sql] {}
[2021-04-26 15:43:31 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:31 log.py:info:117 INFO] SELECT data_set_datail.id AS data_set_datail_id, data_set_datail.model_name AS data_set_datail_model_name
FROM data_set_datail
WHERE data_set_datail.data_path = %(data_path_1)s
LIMIT %(param_1)s
[2021-04-26 15:43:31 log.py:info:117 INFO] [generated in 0.00035s] {'data_path_1': 'suite/fst_assemble_flx_v8_score/2021-04-26 15-43-31-095100/detail/detail_fst_assemble_flx_v8_score.json', 'param_1': 1}
[2021-04-26 15:43:31 log.py:info:117 INFO] INSERT INTO user_test (data_set_datail_id, model_name, batch_uuid, data_detail) VALUES (%(data_set_datail_id)s, %(model_name)s, %(batch_uuid)s, %(data_detail)s)
[2021-04-26 15:43:31 log.py:info:117 INFO] [generated in 0.00034s] {'data_set_datail_id': 152, 'model_name': 'fst_assemble_flx_v8_score', 'batch_uuid': '6ee8f8fe0b6bc7543c287c1d9b3e7d5b', 'data_detail': "{'code': 200, 'data': {'features': {'third_data_source#brlhp_2_scorecust1': {'state': 200, 'value': 43}, 'third_data_source#pinTai_tb_score3': {'stat ... (78 characters truncated) ... 200, 'value': 60}, 'third_data_source#td_fs_Fscore': {'state': 200, 'value': 11}, 'third_data_source#xy_model3_score': {'state': 200, 'value': 1}}}}"}
[2021-04-26 15:43:31 log.py:info:117 INFO] COMMIT
[2021-04-26 15:43:31 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-26 15:43:31 log.py:info:117 INFO] SELECT user_test.batch_uuid AS user_test_batch_uuid, user_test.data_detail AS user_test_data_detail
FROM user_test
WHERE user_test.model_name = %(model_name_1)s AND user_test.data_set_datail_id = %(data_set_datail_id_1)s
[2021-04-26 15:43:31 log.py:info:117 INFO] [generated in 0.00030s] {'model_name_1': 'fst_assemble_flx_v8_score', 'data_set_datail_id_1': 152}
[2021-04-26 15:43:31 web.py:log_request:2243 INFO] 200 POST /api/automatic (::1) 9233.96ms
[2021-04-27 10:22:28 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-27 10:22:28 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:22:28 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-27 10:22:28 log.py:info:117 INFO] [generated in 0.00049s] {}
[2021-04-27 10:22:28 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-27 10:22:28 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:22:29 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-27 10:22:29 log.py:info:117 INFO] SELECT models_datail.id AS models_datail_id, models_datail.name AS models_datail_name, models_datail.content AS models_datail_content, models_datail.create_name AS models_datail_create_name, models_datail.el_expression AS models_datail_el_expression, models_datail.create_at AS models_datail_create_at, models_datail.update_at AS models_datail_update_at
FROM models_datail
WHERE models_datail.name = %(name_1)s
[2021-04-27 10:22:29 log.py:info:117 INFO] [generated in 0.00037s] {'name_1': 'fst_assemble_lx_v8_score'}
[2021-04-27 10:22:29 log.py:info:117 INFO] INSERT INTO models_datail (name, content, create_name, el_expression, create_at, update_at) VALUES (%(name)s, %(content)s, %(create_name)s, %(el_expression)s, %(create_at)s, %(update_at)s)
[2021-04-27 10:22:29 log.py:info:117 INFO] [generated in 0.00047s] {'name': 'fst_assemble_lx_v8_score', 'content': '自动生成', 'create_name': '自动', 'el_expression': None, 'create_at': datetime.datetime(2021, 4, 27, 10, 21, 57, 988153), 'update_at': datetime.datetime(2021, 4, 27, 10, 21, 57, 988299)}
[2021-04-27 10:22:29 log.py:info:117 INFO] COMMIT
[2021-04-27 10:22:30 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-27 10:22:30 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:22:30 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-27 10:22:30 log.py:info:117 INFO] [generated in 0.00075s] {}
[2021-04-27 10:22:30 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-27 10:22:30 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:22:30 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-27 10:22:30 log.py:info:117 INFO] SELECT data_set.model_name AS data_set_model_name, models_datail.id AS model_id, data_set.user_count AS data_set_user_count, feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round
FROM data_set INNER JOIN feature_detail ON data_set.feature_name = feature_detail.feature_name INNER JOIN models_datail ON models_datail.name = data_set.model_name
WHERE data_set.model_name = %(model_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-27 10:22:30 log.py:info:117 INFO] [generated in 0.00041s] {'model_name_1': 'fst_assemble_lx_v8_score', 'is_active_1': 1}
[2021-04-27 10:22:30 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (127.0.0.1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='127.0.0.1')
Traceback (most recent call last):
File "/Users/dm/.virtualenvs/model-data-test-0EaRlSf6/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 33, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 72, in get_auto
if result_add_userTest['code'] == 200:
TypeError: 'NoneType' object is not subscriptable
[2021-04-27 10:22:30 web.py:log_request:2243 ERROR] 500 POST /api/automatic (127.0.0.1) 2100.73ms
[2021-04-27 10:25:27 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-27 10:25:27 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:25:28 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-27 10:25:28 log.py:info:117 INFO] [generated in 0.00068s] {}
[2021-04-27 10:25:28 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-27 10:25:28 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:25:28 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-27 10:25:28 log.py:info:117 INFO] SELECT models_datail.id AS models_datail_id, models_datail.name AS models_datail_name, models_datail.content AS models_datail_content, models_datail.create_name AS models_datail_create_name, models_datail.el_expression AS models_datail_el_expression, models_datail.create_at AS models_datail_create_at, models_datail.update_at AS models_datail_update_at
FROM models_datail
WHERE models_datail.name = %(name_1)s
[2021-04-27 10:25:28 log.py:info:117 INFO] [generated in 0.00035s] {'name_1': 'fst_assemble_lx_v8_score'}
[2021-04-27 10:25:29 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-27 10:25:29 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:25:29 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-27 10:25:29 log.py:info:117 INFO] [generated in 0.00025s] {}
[2021-04-27 10:25:29 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-27 10:25:29 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:25:29 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-27 10:25:29 log.py:info:117 INFO] SELECT data_set.model_name AS data_set_model_name, models_datail.id AS model_id, data_set.user_count AS data_set_user_count, feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round
FROM data_set INNER JOIN feature_detail ON data_set.feature_name = feature_detail.feature_name INNER JOIN models_datail ON models_datail.name = data_set.model_name
WHERE data_set.model_name = %(model_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-27 10:25:29 log.py:info:117 INFO] [generated in 0.00051s] {'model_name_1': 'fst_assemble_lx_v8_score', 'is_active_1': 1}
[2021-04-27 10:25:29 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (127.0.0.1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='127.0.0.1')
Traceback (most recent call last):
File "/Users/dm/.virtualenvs/model-data-test-0EaRlSf6/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 33, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 72, in get_auto
if result_add_userTest['code'] == 200:
TypeError: 'NoneType' object is not subscriptable
[2021-04-27 10:25:29 web.py:log_request:2243 ERROR] 500 POST /api/automatic (127.0.0.1) 4117.65ms
[2021-04-27 10:26:26 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-27 10:26:26 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:26:26 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-27 10:26:26 log.py:info:117 INFO] [generated in 0.00048s] {}
[2021-04-27 10:26:26 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-27 10:26:26 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:26:26 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-27 10:26:26 log.py:info:117 INFO] SELECT models_datail.id AS models_datail_id, models_datail.name AS models_datail_name, models_datail.content AS models_datail_content, models_datail.create_name AS models_datail_create_name, models_datail.el_expression AS models_datail_el_expression, models_datail.create_at AS models_datail_create_at, models_datail.update_at AS models_datail_update_at
FROM models_datail
WHERE models_datail.name = %(name_1)s
[2021-04-27 10:26:26 log.py:info:117 INFO] [generated in 0.00031s] {'name_1': 'fst_assemble_lx_v8_score'}
[2021-04-27 10:26:26 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-27 10:26:26 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:26:26 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-27 10:26:26 log.py:info:117 INFO] [generated in 0.00046s] {}
[2021-04-27 10:26:26 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-27 10:26:26 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:26:26 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-27 10:26:26 log.py:info:117 INFO] SELECT data_set.model_name AS data_set_model_name, models_datail.id AS model_id, data_set.user_count AS data_set_user_count, feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round
FROM data_set INNER JOIN feature_detail ON data_set.feature_name = feature_detail.feature_name INNER JOIN models_datail ON models_datail.name = data_set.model_name
WHERE data_set.model_name = %(model_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-27 10:26:26 log.py:info:117 INFO] [generated in 0.00038s] {'model_name_1': 'fst_assemble_lx_v8_score', 'is_active_1': 1}
[2021-04-27 10:26:26 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Users/dm/.virtualenvs/model-data-test-0EaRlSf6/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 33, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 72, in get_auto
if result_add_userTest['code'] == 200:
TypeError: 'NoneType' object is not subscriptable
[2021-04-27 10:26:26 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 296.92ms
[2021-04-27 10:27:01 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-27 10:27:01 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:27:01 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-27 10:27:01 log.py:info:117 INFO] [generated in 0.00058s] {}
[2021-04-27 10:27:01 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-27 10:27:01 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:27:01 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-27 10:27:01 log.py:info:117 INFO] SELECT models_datail.id AS models_datail_id, models_datail.name AS models_datail_name, models_datail.content AS models_datail_content, models_datail.create_name AS models_datail_create_name, models_datail.el_expression AS models_datail_el_expression, models_datail.create_at AS models_datail_create_at, models_datail.update_at AS models_datail_update_at
FROM models_datail
WHERE models_datail.name = %(name_1)s
[2021-04-27 10:27:01 log.py:info:117 INFO] [generated in 0.00044s] {'name_1': 'fst_assemble_lx_v8_score'}
[2021-04-27 10:27:01 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-27 10:27:01 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:27:01 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-27 10:27:01 log.py:info:117 INFO] [generated in 0.00046s] {}
[2021-04-27 10:27:01 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-27 10:27:01 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:27:01 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-27 10:27:01 log.py:info:117 INFO] SELECT data_set.model_name AS data_set_model_name, models_datail.id AS model_id, data_set.user_count AS data_set_user_count, feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round
FROM data_set INNER JOIN feature_detail ON data_set.feature_name = feature_detail.feature_name INNER JOIN models_datail ON models_datail.name = data_set.model_name
WHERE data_set.model_name = %(model_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-04-27 10:27:01 log.py:info:117 INFO] [generated in 0.00041s] {'model_name_1': 'fst_assemble_lx_v8_score', 'is_active_1': 1}
[2021-04-27 10:27:01 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Users/dm/.virtualenvs/model-data-test-0EaRlSf6/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 33, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 72, in get_auto
if result_add_userTest['code'] == 200:
TypeError: 'NoneType' object is not subscriptable
[2021-04-27 10:27:01 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 329.12ms
[2021-04-27 10:35:02 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-04-27 10:35:02 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:35:02 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-04-27 10:35:02 log.py:info:117 INFO] [generated in 0.00364s] {}
[2021-04-27 10:35:02 log.py:info:117 INFO] SELECT DATABASE()
[2021-04-27 10:35:02 log.py:info:117 INFO] [raw sql] {}
[2021-04-27 10:35:02 log.py:info:117 INFO] BEGIN (implicit)
[2021-04-27 10:35:02 log.py:info:117 INFO] SELECT models_datail.id AS models_datail_id, models_datail.name AS models_datail_name, models_datail.content AS models_datail_content, models_datail.create_name AS models_datail_create_name, models_datail.el_expression AS models_datail_el_expression, models_datail.create_at AS models_datail_create_at, models_datail.update_at AS models_datail_update_at
FROM models_datail
WHERE models_datail.name = %(name_1)s
[2021-04-27 10:35:02 log.py:info:117 INFO] [generated in 0.00435s] {'name_1': 'fst_assemble_lx_v8_score'}
[2021-05-08 16:22:35 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-05-08 16:22:35 log.py:info:117 INFO] [raw sql] {}
[2021-05-08 16:22:35 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-05-08 16:22:35 log.py:info:117 INFO] [generated in 0.00053s] {}
[2021-05-08 16:22:35 log.py:info:117 INFO] SELECT DATABASE()
[2021-05-08 16:22:35 log.py:info:117 INFO] [raw sql] {}
[2021-05-08 16:22:36 log.py:info:117 INFO] BEGIN (implicit)
[2021-05-08 16:22:36 log.py:info:117 INFO] SELECT models_datail.id AS models_datail_id, models_datail.name AS models_datail_name, models_datail.content AS models_datail_content, models_datail.create_name AS models_datail_create_name, models_datail.el_expression AS models_datail_el_expression, models_datail.create_at AS models_datail_create_at, models_datail.update_at AS models_datail_update_at
FROM models_datail
WHERE models_datail.name = %(name_1)s
[2021-05-08 16:22:36 log.py:info:117 INFO] [generated in 0.00038s] {'name_1': 'model_exec_data_source#fst_assemble_flx_v8_score'}
[2021-05-08 16:22:36 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-05-08 16:22:36 log.py:info:117 INFO] [raw sql] {}
[2021-05-08 16:22:36 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-05-08 16:22:36 log.py:info:117 INFO] [generated in 0.00059s] {}
[2021-05-08 16:22:36 log.py:info:117 INFO] SELECT DATABASE()
[2021-05-08 16:22:36 log.py:info:117 INFO] [raw sql] {}
[2021-05-08 16:22:36 log.py:info:117 INFO] BEGIN (implicit)
[2021-05-08 16:22:36 log.py:info:117 INFO] SELECT data_set.model_name AS data_set_model_name, models_datail.id AS model_id, data_set.user_count AS data_set_user_count, feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round
FROM data_set INNER JOIN feature_detail ON data_set.feature_name = feature_detail.feature_name INNER JOIN models_datail ON models_datail.name = data_set.model_name
WHERE data_set.model_name = %(model_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-05-08 16:22:36 log.py:info:117 INFO] [generated in 0.00041s] {'model_name_1': 'model_exec_data_source#fst_assemble_flx_v8_score', 'is_active_1': 1}
[2021-05-08 16:22:36 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Users/dm/.virtualenvs/model-data-test-0EaRlSf6/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 33, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 72, in get_auto
if result_add_userTest['code'] == 200:
TypeError: 'NoneType' object is not subscriptable
[2021-05-08 16:22:36 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 1682.81ms
This source diff could not be displayed because it is too large. You can view the blob instead.
[2021-12-30 16:22:01 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/urllib3/connection.py", line 175, in _new_conn
(self._dns_host, self.port), self.timeout, **extra_kw
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/urllib3/util/connection.py", line 96, in create_connection
raise err
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/urllib3/util/connection.py", line 86, in create_connection
sock.connect(sa)
ConnectionRefusedError: [Errno 61] Connection refused
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/urllib3/connectionpool.py", line 706, in urlopen
chunked=chunked,
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/urllib3/connectionpool.py", line 394, in _make_request
conn.request(method, url, **httplib_request_kw)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/urllib3/connection.py", line 239, in request
super(HTTPConnection, self).request(method, url, body=body, headers=headers)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1229, in request
self._send_request(method, url, body, headers, encode_chunked)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1275, in _send_request
self.endheaders(body, encode_chunked=encode_chunked)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1224, in endheaders
self._send_output(message_body, encode_chunked=encode_chunked)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1016, in _send_output
self.send(msg)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 956, in send
self.connect()
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/urllib3/connection.py", line 205, in connect
conn = self._new_conn()
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/urllib3/connection.py", line 187, in _new_conn
self, "Failed to establish a new connection: %s" % e
urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7fb82d2505f8>: Failed to establish a new connection: [Errno 61] Connection refused
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/requests/adapters.py", line 449, in send
timeout=timeout
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/urllib3/connectionpool.py", line 756, in urlopen
method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2]
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/urllib3/util/retry.py", line 574, in increment
raise MaxRetryError(_pool, url, error or ResponseError(cause))
urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='172.21.10.25', port=9012): Max retries exceeded with url: /manage/features (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7fb82d2505f8>: Failed to establish a new connection: [Errno 61] Connection refused'))
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 28, in post
r = requests.post(url,data={'codes':self.model_name})
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/requests/api.py", line 117, in post
return request('post', url, data=data, json=json, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/requests/api.py", line 61, in request
return session.request(method=method, url=url, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/requests/sessions.py", line 542, in request
resp = self.send(prep, **send_kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/requests/sessions.py", line 655, in send
r = adapter.send(request, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/requests/adapters.py", line 516, in send
raise ConnectionError(e, request=request)
requests.exceptions.ConnectionError: HTTPConnectionPool(host='172.21.10.25', port=9012): Max retries exceeded with url: /manage/features (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7fb82d2505f8>: Failed to establish a new connection: [Errno 61] Connection refused'))
[2021-12-30 16:22:01 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 2030.64ms
[2021-12-30 16:24:16 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 34, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 56, in get_auto
result_model = add_models_logic(modelsData,self.model_name,'自动生成','自动')
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/logic.py", line 13, in add_models_logic
if not session.find_single(models_name):
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/modelsData_model.py", line 10, in find_single
return self.get_json(self.session.query(TabModelsData).filter_by(name = name))
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/base_model.py", line 72, in get_json
raise TypeError('Type error of parameter')
TypeError: Type error of parameter
[2021-12-30 16:24:16 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 95.09ms
[2021-12-30 16:38:40 autoreload.py:_check_file:201 INFO] /Users/dm/Desktop/python_script/model-data-test/model_data_test/settings.py modified; restarting server
[2021-12-30 16:38:47 autoreload.py:_check_file:201 INFO] /Users/dm/Desktop/python_script/model-data-test/model_data_test/settings.py modified; restarting server
[2021-12-30 16:38:55 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 34, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 56, in get_auto
result_model = add_models_logic(modelsData,self.model_name,'自动生成','自动')
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/logic.py", line 13, in add_models_logic
if not session.find_single(models_name):
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/modelsData_model.py", line 10, in find_single
return self.get_json(self.session.query(TabModelsData).filter_by(name = name))
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/base_model.py", line 72, in get_json
raise TypeError('Type error of parameter')
TypeError: Type error of parameter
[2021-12-30 16:38:55 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 121.79ms
[2021-12-30 16:41:16 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 34, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 56, in get_auto
result_model = add_models_logic(modelsData,self.model_name,'自动生成','自动')
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/logic.py", line 13, in add_models_logic
if not session.find_single(models_name):
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/modelsData_model.py", line 10, in find_single
return self.get_json(self.session.query(TabModelsData).filter_by(name = name))
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/base_model.py", line 73, in get_json
raise TypeError('Type error of parameter')
TypeError: Type error of parameter
[2021-12-30 16:41:16 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 264.12ms
[2021-12-30 17:17:30 autoreload.py:_check_file:201 INFO] /Users/dm/Desktop/python_script/model-data-test/model_data_api/model/base_model.py modified; restarting server
[2021-12-30 17:17:46 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 34, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 56, in get_auto
result_model = add_models_logic(modelsData,self.model_name,'自动生成','自动')
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/logic.py", line 13, in add_models_logic
if not session.find_single(models_name):
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/modelsData_model.py", line 10, in find_single
return self.get_json(self.session.query(TabModelsData).filter_by(name = name))
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/base_model.py", line 73, in get_json
raise TypeError('Type error of parameter')
TypeError: Type error of parameter
[2021-12-30 17:17:46 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 178.73ms
[2021-12-30 17:18:03 autoreload.py:_check_file:201 INFO] /Users/dm/Desktop/python_script/model-data-test/model_data_api/model/base_model.py modified; restarting server
[2021-12-30 17:18:09 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 34, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 56, in get_auto
result_model = add_models_logic(modelsData,self.model_name,'自动生成','自动')
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/logic.py", line 13, in add_models_logic
if not session.find_single(models_name):
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/modelsData_model.py", line 10, in find_single
return self.get_json(self.session.query(TabModelsData).filter_by(name = name))
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/base_model.py", line 73, in get_json
raise TypeError('Type error of parameter')
TypeError: Type error of parameter
[2021-12-30 17:18:09 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 456.76ms
[2021-12-30 17:19:24 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 34, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 56, in get_auto
result_model = add_models_logic(modelsData,self.model_name,'自动生成','自动')
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/logic.py", line 14, in add_models_logic
if not session.find_single(models_name):
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/modelsData_model.py", line 10, in find_single
return self.get_json(self.session.query(TabModelsData).filter_by(name = name))
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/base_model.py", line 73, in get_json
raise TypeError('Type error of parameter')
TypeError: Type error of parameter
[2021-12-30 17:19:24 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 1090.89ms
[2021-12-30 17:24:01 autoreload.py:_check_file:201 INFO] /Users/dm/Desktop/python_script/model-data-test/model_data_api/model/base_model.py modified; restarting server
[2021-12-30 17:24:15 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 34, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 56, in get_auto
result_model = add_models_logic(modelsData,self.model_name,'自动生成','自动')
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/logic.py", line 14, in add_models_logic
if not session.find_single(models_name):
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/modelsData_model.py", line 10, in find_single
return self.get_json(self.session.query(TabModelsData).filter_by(name = name))
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/model/base_model.py", line 73, in get_json
raise TypeError('Type error of parameter')
TypeError: Type error of parameter
[2021-12-30 17:24:15 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 551.19ms
[2021-12-30 17:26:15 autoreload.py:_check_file:201 INFO] /Users/dm/Desktop/python_script/model-data-test/model_data_test/settings.py modified; restarting server
[2021-12-30 17:27:48 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-12-30 17:27:48 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:27:48 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-12-30 17:27:48 log.py:info:117 INFO] [generated in 0.00032s] {}
[2021-12-30 17:27:48 log.py:info:117 INFO] SELECT DATABASE()
[2021-12-30 17:27:48 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:27:48 log.py:info:117 INFO] BEGIN (implicit)
[2021-12-30 17:27:48 log.py:info:117 INFO] SELECT models_datail.id AS models_datail_id, models_datail.name AS models_datail_name, models_datail.content AS models_datail_content, models_datail.create_name AS models_datail_create_name, models_datail.el_expression AS models_datail_el_expression, models_datail.create_at AS models_datail_create_at, models_datail.update_at AS models_datail_update_at
FROM models_datail
WHERE models_datail.name = %(name_1)s
[2021-12-30 17:27:48 log.py:info:117 INFO] [generated in 0.00034s] {'name_1': 'ss_model_v10'}
[2021-12-30 17:27:48 log.py:info:117 INFO] INSERT INTO models_datail (name, content, create_name, el_expression, create_at, update_at) VALUES (%(name)s, %(content)s, %(create_name)s, %(el_expression)s, %(create_at)s, %(update_at)s)
[2021-12-30 17:27:48 log.py:info:117 INFO] [generated in 0.00036s] {'name': 'ss_model_v10', 'content': '自动生成', 'create_name': '自动', 'el_expression': None, 'create_at': datetime.datetime(2021, 12, 30, 17, 27, 45, 312047), 'update_at': datetime.datetime(2021, 12, 30, 17, 27, 45, 312212)}
[2021-12-30 17:27:48 log.py:info:117 INFO] COMMIT
[2021-12-30 17:27:48 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-12-30 17:27:48 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:27:48 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-12-30 17:27:48 log.py:info:117 INFO] [generated in 0.00064s] {}
[2021-12-30 17:27:48 log.py:info:117 INFO] SELECT DATABASE()
[2021-12-30 17:27:48 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:27:48 log.py:info:117 INFO] BEGIN (implicit)
[2021-12-30 17:27:48 log.py:info:117 INFO] SELECT data_set.model_name AS data_set_model_name, models_datail.id AS model_id, data_set.user_count AS data_set_user_count, feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round
FROM data_set INNER JOIN feature_detail ON data_set.feature_name = feature_detail.feature_name INNER JOIN models_datail ON models_datail.name = data_set.model_name
WHERE data_set.model_name = %(model_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-12-30 17:27:48 log.py:info:117 INFO] [generated in 0.00046s] {'model_name_1': 'ss_model_v10', 'is_active_1': 1}
[2021-12-30 17:27:48 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 34, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 73, in get_auto
if result_add_userTest['code'] == 200:
TypeError: 'NoneType' object is not subscriptable
[2021-12-30 17:27:48 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 584.06ms
[2021-12-30 17:29:55 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-12-30 17:29:55 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:29:55 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-12-30 17:29:55 log.py:info:117 INFO] [generated in 0.00049s] {}
[2021-12-30 17:29:55 log.py:info:117 INFO] SELECT DATABASE()
[2021-12-30 17:29:55 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:29:55 log.py:info:117 INFO] BEGIN (implicit)
[2021-12-30 17:29:55 log.py:info:117 INFO] SELECT models_datail.id AS models_datail_id, models_datail.name AS models_datail_name, models_datail.content AS models_datail_content, models_datail.create_name AS models_datail_create_name, models_datail.el_expression AS models_datail_el_expression, models_datail.create_at AS models_datail_create_at, models_datail.update_at AS models_datail_update_at
FROM models_datail
WHERE models_datail.name = %(name_1)s
[2021-12-30 17:29:55 log.py:info:117 INFO] [generated in 0.00040s] {'name_1': 'ss_model_v10'}
[2021-12-30 17:29:55 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-12-30 17:29:55 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:29:55 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-12-30 17:29:55 log.py:info:117 INFO] [generated in 0.00037s] {}
[2021-12-30 17:29:55 log.py:info:117 INFO] SELECT DATABASE()
[2021-12-30 17:29:55 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:29:55 log.py:info:117 INFO] BEGIN (implicit)
[2021-12-30 17:29:55 log.py:info:117 INFO] SELECT data_set.model_name AS data_set_model_name, models_datail.id AS model_id, data_set.user_count AS data_set_user_count, feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round
FROM data_set INNER JOIN feature_detail ON data_set.feature_name = feature_detail.feature_name INNER JOIN models_datail ON models_datail.name = data_set.model_name
WHERE data_set.model_name = %(model_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-12-30 17:29:55 log.py:info:117 INFO] [generated in 0.00032s] {'model_name_1': 'ss_model_v10', 'is_active_1': 1}
[2021-12-30 17:29:55 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 34, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 73, in get_auto
if result_add_userTest['code'] == 200:
TypeError: 'NoneType' object is not subscriptable
[2021-12-30 17:29:55 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 399.70ms
[2021-12-30 17:34:55 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-12-30 17:34:55 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:34:55 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-12-30 17:34:55 log.py:info:117 INFO] [generated in 0.00038s] {}
[2021-12-30 17:34:55 log.py:info:117 INFO] SELECT DATABASE()
[2021-12-30 17:34:55 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:34:55 log.py:info:117 INFO] BEGIN (implicit)
[2021-12-30 17:34:55 log.py:info:117 INFO] SELECT models_datail.id AS models_datail_id, models_datail.name AS models_datail_name, models_datail.content AS models_datail_content, models_datail.create_name AS models_datail_create_name, models_datail.el_expression AS models_datail_el_expression, models_datail.create_at AS models_datail_create_at, models_datail.update_at AS models_datail_update_at
FROM models_datail
WHERE models_datail.name = %(name_1)s
[2021-12-30 17:34:55 log.py:info:117 INFO] [generated in 0.00080s] {'name_1': 'ss_model_v10'}
[2021-12-30 17:34:55 log.py:info:117 INFO] SHOW VARIABLES LIKE 'sql_mode'
[2021-12-30 17:34:55 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:34:55 log.py:info:117 INFO] SHOW VARIABLES LIKE 'lower_case_table_names'
[2021-12-30 17:34:55 log.py:info:117 INFO] [generated in 0.00050s] {}
[2021-12-30 17:34:55 log.py:info:117 INFO] SELECT DATABASE()
[2021-12-30 17:34:55 log.py:info:117 INFO] [raw sql] {}
[2021-12-30 17:34:55 log.py:info:117 INFO] BEGIN (implicit)
[2021-12-30 17:34:55 log.py:info:117 INFO] SELECT data_set.model_name AS data_set_model_name, models_datail.id AS model_id, data_set.user_count AS data_set_user_count, feature_detail.id AS feature_detail_id, feature_detail.feature_name AS feature_detail_feature_name, feature_detail.feature_type AS feature_detail_feature_type, feature_detail.feature_value AS feature_detail_feature_value, feature_detail.feature_gdp AS feature_detail_feature_gdp, feature_detail.data_type AS feature_detail_data_type, feature_detail.data_round AS feature_detail_data_round
FROM data_set INNER JOIN feature_detail ON data_set.feature_name = feature_detail.feature_name INNER JOIN models_datail ON models_datail.name = data_set.model_name
WHERE data_set.model_name = %(model_name_1)s AND feature_detail.is_active = %(is_active_1)s
[2021-12-30 17:34:55 log.py:info:117 INFO] [generated in 0.00048s] {'model_name_1': 'ss_model_v10', 'is_active_1': 1}
[2021-12-30 17:34:55 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 35, in post
result = self.get_auto()
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 74, in get_auto
if result_add_userTest['code'] == 200:
TypeError: 'NoneType' object is not subscriptable
[2021-12-30 17:34:55 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 446.25ms
[2021-12-31 10:25:29 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 32, in post
self.feature_name = response['data'][self.model_name]['new']+response['data'][self.model_name]['old']
KeyError: 'ss_assemble_v10_score,reloan_assemble_v10_score'
[2021-12-31 10:25:29 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 242.05ms
[2021-12-31 10:25:44 web.py:log_exception:1793 ERROR] Uncaught exception POST /api/automatic (::1)
HTTPServerRequest(protocol='http', host='localhost:23020', method='POST', uri='/api/automatic', version='HTTP/1.1', remote_ip='::1')
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tornado/web.py", line 1702, in _execute
result = method(*self.path_args, **self.path_kwargs)
File "/Users/dm/Desktop/python_script/model-data-test/model_data_api/handler/Automatic_Handler.py", line 32, in post
self.feature_name = response['data'][self.model_name]['new']+response['data'][self.model_name]['old']
KeyError: 'ss_assemble_v10_score,reloan_assemble_v10_score'
[2021-12-31 10:25:44 web.py:log_request:2243 ERROR] 500 POST /api/automatic (::1) 2044.10ms
[2022-01-04 16:05:11 base.py:_finalize_fairy:766 ERROR] Exception during reset or similar
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pymysql/connections.py", line 756, in _write_bytes
self._sock.sendall(data)
BrokenPipeError: [Errno 32] Broken pipe
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sqlalchemy/pool/base.py", line 739, in _finalize_fairy
fairy._reset(pool)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sqlalchemy/pool/base.py", line 988, in _reset
pool._dialect.do_rollback(self)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sqlalchemy/engine/default.py", line 669, in do_rollback
dbapi_connection.rollback()
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pymysql/connections.py", line 479, in rollback
self._execute_command(COMMAND.COM_QUERY, "ROLLBACK")
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pymysql/connections.py", line 814, in _execute_command
self._write_bytes(packet)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pymysql/connections.py", line 760, in _write_bytes
CR.CR_SERVER_GONE_ERROR, "MySQL server has gone away (%r)" % (e,)
pymysql.err.OperationalError: (2006, "MySQL server has gone away (BrokenPipeError(32, 'Broken pipe'))")
[2022-01-04 16:05:11 base.py:_finalize_fairy:766 ERROR] Exception during reset or similar
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pymysql/connections.py", line 756, in _write_bytes
self._sock.sendall(data)
BrokenPipeError: [Errno 32] Broken pipe
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sqlalchemy/pool/base.py", line 739, in _finalize_fairy
fairy._reset(pool)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sqlalchemy/pool/base.py", line 988, in _reset
pool._dialect.do_rollback(self)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sqlalchemy/engine/default.py", line 669, in do_rollback
dbapi_connection.rollback()
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pymysql/connections.py", line 479, in rollback
self._execute_command(COMMAND.COM_QUERY, "ROLLBACK")
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pymysql/connections.py", line 814, in _execute_command
self._write_bytes(packet)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pymysql/connections.py", line 760, in _write_bytes
CR.CR_SERVER_GONE_ERROR, "MySQL server has gone away (%r)" % (e,)
pymysql.err.OperationalError: (2006, "MySQL server has gone away (BrokenPipeError(32, 'Broken pipe'))")
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -29,7 +29,7 @@ class AutomaticHandler(BaseHandler):
if r.status_code == 200:
response = r.json()
self.feature_name = response['data'][self.model_name]['new']+response['data'][self.model_name]['old']
print('获取模型新旧数据:',self.feature_name)
result = self.get_auto()
self.write(JsonUtil.build_json_data(code=result['code'],
message=result['message'],
......@@ -61,20 +61,23 @@ class AutomaticHandler(BaseHandler):
userTestData = UserTestDataManager()
result_model = add_models_logic(modelsData,self.model_name,'自动生成','自动')
print("模型创建结果:",result_model)
for f in self.feature_name:
self.auto_feature.append({'feature_name':f,'feature_content':'自动生成','assert_name':'模型测试'})
result_feature = add_features_logic(featureData,self.auto_feature)
print('添加特征结果:',result_feature)
for f in self.auto_feature:
self.auto_dataset['data_detail'].append(f)
result_dataset = set_modelsAndfeature_logic(dataSet,self.auto_dataset)
print("模型和特征挂钩结果:",result_dataset)
result_datasetdetail = create_dataSet_logic(dataSetDetail,self.model_name,common)
print("创建测试数据目录备份测试数据文件:",result_datasetdetail)
result_add_userTest = None
if result_datasetdetail['code'] == 200:
result_add_userTest = add_userTest_logic(userTestData,result_datasetdetail['result']['detail_path'],common)
result_add_userTest = add_userTest_logic(userTestData,result_datasetdetail['result']['detail_path'],common,isTrue=common.get('ISTRUE'))
result_userTest = None
if result_add_userTest['code'] == 200:
......
......@@ -129,7 +129,7 @@ def create_dataSet_logic(session,model_name,common):
_result = get_array(_id,_gdp_num,_type,_value,_data_type,_data_round)
result[k] = _result
print('1----')
_path ,_tree,_treeDetail = create_suiteFile(common,model_name,datetime.datetime.now())
_data = os.path.join(_treeDetail['path'],_treeDetail['name'][0],'data_%s.json'%(model_name))
_detail = os.path.join(_treeDetail['path'],_treeDetail['name'][1],'detail_%s.json'%(model_name))
......@@ -165,7 +165,7 @@ def create_dataSet_logic(session,model_name,common):
'code':JsonUtil.Constants.Code_Success,'message':JsonUtil.Constants.Msg_Success}
def add_userTest_logic(session,file_path,common):
def add_userTest_logic(session,file_path,common,isTrue=True):
result = {}
if file_path:
with open(get_path(common,'suite',file_path), 'r',encoding='utf8') as f:
......@@ -175,7 +175,12 @@ def add_userTest_logic(session,file_path,common):
_df_result = pd.DataFrame(result)
_df_result['result'] = _df_result.apply(lambda x : get_change(x),axis=1)
_df_result['batch_uuid'] = None
_df_result['batch_uuid'] = _df_result['batch_uuid'] .apply(lambda x : hashlib.md5(str(datetime.datetime.now()).encode(encoding='UTF-8')).hexdigest())
if not isTrue:
_df_result['batch_uuid'] = _df_result['batch_uuid'] .apply(lambda x : hashlib.md5(str(datetime.datetime.now()).encode(encoding='UTF-8')).hexdigest())
else:
uuid_path=get_path(common,'DATA','uuid.csv')
_df_result['batch_uuid']=pd.read_csv(uuid_path,encoding='utf-8')['uuid'][:len(result)]
batch_uuid = _df_result['batch_uuid'].tolist()
data_detail = _df_result['result'].tolist()
......
......@@ -14,13 +14,19 @@ class DataSetDetailManager(BaseManager):
TabDataSet.feature_name==TabFeatureData.feature_name
).join(TabModelsData,TabModelsData.name ==TabDataSet.model_name
).filter(TabDataSet.model_name == model_name,TabFeatureData.is_active==1)
# values = self.session.execute(query).fetchall()
#query = self.session.execute(query).fetchall()
result = {}
#print('query==>',query)
temp=['model_name', 'model_id', 'user_count']
temp_3=['id', 'feature_name', 'feature_type', 'feature_value', 'feature_gdp', 'data_type', 'data_round']
for i ,res in enumerate(query):
#print('datasetDetail==',i,'---',res,type(res))
if not result:
result=dict(result,**dict(zip(res.keys()[0:3],list(res[0:3]))))
# print('keys==',res,res.keys())
# print('keys==',res,list(res[0:3]))
result=dict(result,**dict(zip(temp,list(res[0:3]))))
result['data'] = []
result['data'].append(dict(zip(res.keys()[3:],list(res[3:]))))
result['data'].append(dict(zip(temp_3,list(res[3:]))))
# result = {}
# data = {}
......
......@@ -16,8 +16,11 @@ class FeatureDataManager(BaseManager):
TabAssertData.assert_type,TabAssertData.assert_value,
TabAssertData.assert_gdp,TabAssertData.data_type,TabAssertData.data_round
).filter_by(assert_name=assert_name)
for i ,res in enumerate(query):
print('feature res===',res)
result.append(dict(zip(res.keys(),list(res))))
print('feature result===',result)
return result
......
......@@ -32,7 +32,7 @@ DB_CONNECT_STRING = None
# if DEBUG:
if AMBIENT == 'dev' or AMBIENT =='test':
DB_CONNECT_STRING = { # 支持多个数据库
'model_db':'mysql+pymysql://qa:qatest@172.17.5.13:30267/model_data_test?charset=utf8',
'model_db':'mysql+pymysql://qa:qatest@172.17.5.2:30081/model_data_test?charset=utf8',
#'model_db':'mysql+pymysql://root:root@127.0.0.1:3306/model_data_test?charset=utf8',
}
elif AMBIENT == 'online':
......@@ -50,5 +50,7 @@ common = dict(
static_url_prefix=os.path.join(BASE_DIR, "/static/"),
autoreload = True,
DEBUG = DEBUG,
suite = os.path.join(BASE_DIR,"")
suite = os.path.join(BASE_DIR,""),
DATA =os.path.join(BASE_DIR,"data"),
ISTRUE=1
)
{
"model_name": "fs_assemble_v11_score",
"model_id": 53,
"user_count": 1,
"data": [
{
"id": 4047,
"feature_name": "offline_base_feature#stored_addr_num",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4048,
"feature_name": "offline_base_feature#stored_addr_num",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4049,
"feature_name": "offline_base_feature#stored_addr_num",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4050,
"feature_name": "offline_base_feature#stored_addr_num",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4051,
"feature_name": "offline_base_feature#stored_addr_num",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4052,
"feature_name": "offline_base_feature#stored_addr_num",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4053,
"feature_name": "offline_base_feature#stored_addr_num",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4054,
"feature_name": "third_data_source#union_pay_advisors_UPPD029",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4055,
"feature_name": "third_data_source#union_pay_advisors_UPPD029",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4056,
"feature_name": "third_data_source#union_pay_advisors_UPPD029",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4057,
"feature_name": "third_data_source#union_pay_advisors_UPPD029",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4058,
"feature_name": "third_data_source#union_pay_advisors_UPPD029",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4059,
"feature_name": "third_data_source#union_pay_advisors_UPPD029",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4060,
"feature_name": "third_data_source#union_pay_advisors_UPPD029",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4061,
"feature_name": "third_data_source#union_pay_advisors_UPPD005",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4062,
"feature_name": "third_data_source#union_pay_advisors_UPPD005",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4063,
"feature_name": "third_data_source#union_pay_advisors_UPPD005",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4064,
"feature_name": "third_data_source#union_pay_advisors_UPPD005",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4065,
"feature_name": "third_data_source#union_pay_advisors_UPPD005",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4066,
"feature_name": "third_data_source#union_pay_advisors_UPPD005",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4067,
"feature_name": "third_data_source#union_pay_advisors_UPPD005",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4068,
"feature_name": "third_data_source#union_pay_advisors_UPPA009",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4069,
"feature_name": "third_data_source#union_pay_advisors_UPPA009",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4070,
"feature_name": "third_data_source#union_pay_advisors_UPPA009",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4071,
"feature_name": "third_data_source#union_pay_advisors_UPPA009",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4072,
"feature_name": "third_data_source#union_pay_advisors_UPPA009",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4073,
"feature_name": "third_data_source#union_pay_advisors_UPPA009",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4074,
"feature_name": "third_data_source#union_pay_advisors_UPPA009",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4075,
"feature_name": "third_data_source#union_pay_advisors_UPPD001",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4076,
"feature_name": "third_data_source#union_pay_advisors_UPPD001",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4077,
"feature_name": "third_data_source#union_pay_advisors_UPPD001",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4078,
"feature_name": "third_data_source#union_pay_advisors_UPPD001",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4079,
"feature_name": "third_data_source#union_pay_advisors_UPPD001",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4080,
"feature_name": "third_data_source#union_pay_advisors_UPPD001",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4081,
"feature_name": "third_data_source#union_pay_advisors_UPPD001",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4082,
"feature_name": "third_data_source#union_pay_advisors_UPPE075",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4083,
"feature_name": "third_data_source#union_pay_advisors_UPPE075",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4084,
"feature_name": "third_data_source#union_pay_advisors_UPPE075",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4085,
"feature_name": "third_data_source#union_pay_advisors_UPPE075",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4086,
"feature_name": "third_data_source#union_pay_advisors_UPPE075",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4087,
"feature_name": "third_data_source#union_pay_advisors_UPPE075",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4088,
"feature_name": "third_data_source#union_pay_advisors_UPPE075",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4089,
"feature_name": "offline_behavior_feature#purchased_orderno",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4090,
"feature_name": "offline_behavior_feature#purchased_orderno",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4091,
"feature_name": "offline_behavior_feature#purchased_orderno",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4092,
"feature_name": "offline_behavior_feature#purchased_orderno",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4093,
"feature_name": "offline_behavior_feature#purchased_orderno",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4094,
"feature_name": "offline_behavior_feature#purchased_orderno",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4095,
"feature_name": "offline_behavior_feature#purchased_orderno",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4096,
"feature_name": "third_data_source#union_pay_advisors_UPPC075",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4097,
"feature_name": "third_data_source#union_pay_advisors_UPPC075",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4098,
"feature_name": "third_data_source#union_pay_advisors_UPPC075",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4099,
"feature_name": "third_data_source#union_pay_advisors_UPPC075",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4100,
"feature_name": "third_data_source#union_pay_advisors_UPPC075",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4101,
"feature_name": "third_data_source#union_pay_advisors_UPPC075",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4102,
"feature_name": "third_data_source#union_pay_advisors_UPPC075",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4103,
"feature_name": "third_data_source#union_pay_advisors_UPPC073",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4104,
"feature_name": "third_data_source#union_pay_advisors_UPPC073",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4105,
"feature_name": "third_data_source#union_pay_advisors_UPPC073",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4106,
"feature_name": "third_data_source#union_pay_advisors_UPPC073",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4107,
"feature_name": "third_data_source#union_pay_advisors_UPPC073",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4108,
"feature_name": "third_data_source#union_pay_advisors_UPPC073",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4109,
"feature_name": "third_data_source#union_pay_advisors_UPPC073",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4110,
"feature_name": "third_data_source#union_pay_advisors_UPPE015",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4111,
"feature_name": "third_data_source#union_pay_advisors_UPPE015",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4112,
"feature_name": "third_data_source#union_pay_advisors_UPPE015",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4113,
"feature_name": "third_data_source#union_pay_advisors_UPPE015",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4114,
"feature_name": "third_data_source#union_pay_advisors_UPPE015",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4115,
"feature_name": "third_data_source#union_pay_advisors_UPPE015",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4116,
"feature_name": "third_data_source#union_pay_advisors_UPPE015",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4117,
"feature_name": "offline_behavior_feature#user_clk_sc_sku_max_frequence_price_7d",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4118,
"feature_name": "offline_behavior_feature#user_clk_sc_sku_max_frequence_price_7d",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4119,
"feature_name": "offline_behavior_feature#user_clk_sc_sku_max_frequence_price_7d",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4120,
"feature_name": "offline_behavior_feature#user_clk_sc_sku_max_frequence_price_7d",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4121,
"feature_name": "offline_behavior_feature#user_clk_sc_sku_max_frequence_price_7d",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4122,
"feature_name": "offline_behavior_feature#user_clk_sc_sku_max_frequence_price_7d",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4123,
"feature_name": "offline_behavior_feature#user_clk_sc_sku_max_frequence_price_7d",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4124,
"feature_name": "offline_behavior_feature#user_clk_rc_sku_max_price_7d",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4125,
"feature_name": "offline_behavior_feature#user_clk_rc_sku_max_price_7d",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4126,
"feature_name": "offline_behavior_feature#user_clk_rc_sku_max_price_7d",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4127,
"feature_name": "offline_behavior_feature#user_clk_rc_sku_max_price_7d",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4128,
"feature_name": "offline_behavior_feature#user_clk_rc_sku_max_price_7d",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4129,
"feature_name": "offline_behavior_feature#user_clk_rc_sku_max_price_7d",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4130,
"feature_name": "offline_behavior_feature#user_clk_rc_sku_max_price_7d",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4131,
"feature_name": "third_data_source#union_pay_advisors_UPPC146",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4132,
"feature_name": "third_data_source#union_pay_advisors_UPPC146",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4133,
"feature_name": "third_data_source#union_pay_advisors_UPPC146",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4134,
"feature_name": "third_data_source#union_pay_advisors_UPPC146",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4135,
"feature_name": "third_data_source#union_pay_advisors_UPPC146",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4136,
"feature_name": "third_data_source#union_pay_advisors_UPPC146",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4137,
"feature_name": "third_data_source#union_pay_advisors_UPPC146",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4138,
"feature_name": "third_data_source#union_pay_advisors_UPPE047",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4139,
"feature_name": "third_data_source#union_pay_advisors_UPPE047",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4140,
"feature_name": "third_data_source#union_pay_advisors_UPPE047",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4141,
"feature_name": "third_data_source#union_pay_advisors_UPPE047",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4142,
"feature_name": "third_data_source#union_pay_advisors_UPPE047",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4143,
"feature_name": "third_data_source#union_pay_advisors_UPPE047",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4144,
"feature_name": "third_data_source#union_pay_advisors_UPPE047",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4145,
"feature_name": "third_data_source#union_pay_advisors_UPPC244",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4146,
"feature_name": "third_data_source#union_pay_advisors_UPPC244",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4147,
"feature_name": "third_data_source#union_pay_advisors_UPPC244",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4148,
"feature_name": "third_data_source#union_pay_advisors_UPPC244",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4149,
"feature_name": "third_data_source#union_pay_advisors_UPPC244",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4150,
"feature_name": "third_data_source#union_pay_advisors_UPPC244",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4151,
"feature_name": "third_data_source#union_pay_advisors_UPPC244",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4152,
"feature_name": "third_data_source#union_pay_advisors_UPPC242",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4153,
"feature_name": "third_data_source#union_pay_advisors_UPPC242",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4154,
"feature_name": "third_data_source#union_pay_advisors_UPPC242",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4155,
"feature_name": "third_data_source#union_pay_advisors_UPPC242",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4156,
"feature_name": "third_data_source#union_pay_advisors_UPPC242",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4157,
"feature_name": "third_data_source#union_pay_advisors_UPPC242",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4158,
"feature_name": "third_data_source#union_pay_advisors_UPPC242",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4159,
"feature_name": "third_data_source#union_pay_advisors_UPPC191",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4160,
"feature_name": "third_data_source#union_pay_advisors_UPPC191",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4161,
"feature_name": "third_data_source#union_pay_advisors_UPPC191",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4162,
"feature_name": "third_data_source#union_pay_advisors_UPPC191",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4163,
"feature_name": "third_data_source#union_pay_advisors_UPPC191",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4164,
"feature_name": "third_data_source#union_pay_advisors_UPPC191",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4165,
"feature_name": "third_data_source#union_pay_advisors_UPPC191",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4166,
"feature_name": "third_data_source#union_pay_advisors_UPPD010",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4167,
"feature_name": "third_data_source#union_pay_advisors_UPPD010",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4168,
"feature_name": "third_data_source#union_pay_advisors_UPPD010",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4169,
"feature_name": "third_data_source#union_pay_advisors_UPPD010",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4170,
"feature_name": "third_data_source#union_pay_advisors_UPPD010",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4171,
"feature_name": "third_data_source#union_pay_advisors_UPPD010",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4172,
"feature_name": "third_data_source#union_pay_advisors_UPPD010",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4173,
"feature_name": "third_data_source#union_pay_advisors_UPPE050",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4174,
"feature_name": "third_data_source#union_pay_advisors_UPPE050",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4175,
"feature_name": "third_data_source#union_pay_advisors_UPPE050",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4176,
"feature_name": "third_data_source#union_pay_advisors_UPPE050",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4177,
"feature_name": "third_data_source#union_pay_advisors_UPPE050",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4178,
"feature_name": "third_data_source#union_pay_advisors_UPPE050",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4179,
"feature_name": "third_data_source#union_pay_advisors_UPPE050",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4180,
"feature_name": "third_data_source#union_pay_advisors_UPPD025",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4181,
"feature_name": "third_data_source#union_pay_advisors_UPPD025",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4182,
"feature_name": "third_data_source#union_pay_advisors_UPPD025",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4183,
"feature_name": "third_data_source#union_pay_advisors_UPPD025",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4184,
"feature_name": "third_data_source#union_pay_advisors_UPPD025",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4185,
"feature_name": "third_data_source#union_pay_advisors_UPPD025",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4186,
"feature_name": "third_data_source#union_pay_advisors_UPPD025",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4187,
"feature_name": "third_data_source#union_pay_advisors_UPPE080",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4188,
"feature_name": "third_data_source#union_pay_advisors_UPPE080",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4189,
"feature_name": "third_data_source#union_pay_advisors_UPPE080",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4190,
"feature_name": "third_data_source#union_pay_advisors_UPPE080",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4191,
"feature_name": "third_data_source#union_pay_advisors_UPPE080",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4192,
"feature_name": "third_data_source#union_pay_advisors_UPPE080",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4193,
"feature_name": "third_data_source#union_pay_advisors_UPPE080",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4194,
"feature_name": "third_data_source#union_pay_advisors_UPPC174",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4195,
"feature_name": "third_data_source#union_pay_advisors_UPPC174",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4196,
"feature_name": "third_data_source#union_pay_advisors_UPPC174",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4197,
"feature_name": "third_data_source#union_pay_advisors_UPPC174",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4198,
"feature_name": "third_data_source#union_pay_advisors_UPPC174",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4199,
"feature_name": "third_data_source#union_pay_advisors_UPPC174",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4200,
"feature_name": "third_data_source#union_pay_advisors_UPPC174",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4201,
"feature_name": "third_data_source#union_pay_advisors_UPPE073",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4202,
"feature_name": "third_data_source#union_pay_advisors_UPPE073",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4203,
"feature_name": "third_data_source#union_pay_advisors_UPPE073",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4204,
"feature_name": "third_data_source#union_pay_advisors_UPPE073",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4205,
"feature_name": "third_data_source#union_pay_advisors_UPPE073",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4206,
"feature_name": "third_data_source#union_pay_advisors_UPPE073",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4207,
"feature_name": "third_data_source#union_pay_advisors_UPPE073",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4208,
"feature_name": "third_data_source#union_pay_advisors_UPPE016",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4209,
"feature_name": "third_data_source#union_pay_advisors_UPPE016",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4210,
"feature_name": "third_data_source#union_pay_advisors_UPPE016",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4211,
"feature_name": "third_data_source#union_pay_advisors_UPPE016",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4212,
"feature_name": "third_data_source#union_pay_advisors_UPPE016",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4213,
"feature_name": "third_data_source#union_pay_advisors_UPPE016",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4214,
"feature_name": "third_data_source#union_pay_advisors_UPPE016",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4215,
"feature_name": "offline_behavior_feature#user_clk_all_sku_max_price_7d",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4216,
"feature_name": "offline_behavior_feature#user_clk_all_sku_max_price_7d",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4217,
"feature_name": "offline_behavior_feature#user_clk_all_sku_max_price_7d",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4218,
"feature_name": "offline_behavior_feature#user_clk_all_sku_max_price_7d",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4219,
"feature_name": "offline_behavior_feature#user_clk_all_sku_max_price_7d",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4220,
"feature_name": "offline_behavior_feature#user_clk_all_sku_max_price_7d",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4221,
"feature_name": "offline_behavior_feature#user_clk_all_sku_max_price_7d",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4222,
"feature_name": "third_data_source#union_pay_advisors_UPPC071",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4223,
"feature_name": "third_data_source#union_pay_advisors_UPPC071",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4224,
"feature_name": "third_data_source#union_pay_advisors_UPPC071",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4225,
"feature_name": "third_data_source#union_pay_advisors_UPPC071",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4226,
"feature_name": "third_data_source#union_pay_advisors_UPPC071",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4227,
"feature_name": "third_data_source#union_pay_advisors_UPPC071",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4228,
"feature_name": "third_data_source#union_pay_advisors_UPPC071",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4229,
"feature_name": "third_data_source#union_pay_advisors_UPPC189",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4230,
"feature_name": "third_data_source#union_pay_advisors_UPPC189",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4231,
"feature_name": "third_data_source#union_pay_advisors_UPPC189",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4232,
"feature_name": "third_data_source#union_pay_advisors_UPPC189",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4233,
"feature_name": "third_data_source#union_pay_advisors_UPPC189",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4234,
"feature_name": "third_data_source#union_pay_advisors_UPPC189",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4235,
"feature_name": "third_data_source#union_pay_advisors_UPPC189",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4236,
"feature_name": "third_data_source#union_pay_advisors_UPPE079",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4237,
"feature_name": "third_data_source#union_pay_advisors_UPPE079",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4238,
"feature_name": "third_data_source#union_pay_advisors_UPPE079",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4239,
"feature_name": "third_data_source#union_pay_advisors_UPPE079",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4240,
"feature_name": "third_data_source#union_pay_advisors_UPPE079",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4241,
"feature_name": "third_data_source#union_pay_advisors_UPPE079",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4242,
"feature_name": "third_data_source#union_pay_advisors_UPPE079",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4243,
"feature_name": "third_data_source#union_pay_advisors_UPPE071",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4244,
"feature_name": "third_data_source#union_pay_advisors_UPPE071",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4245,
"feature_name": "third_data_source#union_pay_advisors_UPPE071",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4246,
"feature_name": "third_data_source#union_pay_advisors_UPPE071",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4247,
"feature_name": "third_data_source#union_pay_advisors_UPPE071",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4248,
"feature_name": "third_data_source#union_pay_advisors_UPPE071",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4249,
"feature_name": "third_data_source#union_pay_advisors_UPPE071",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4250,
"feature_name": "third_data_source#union_pay_advisors_UPPC094",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4251,
"feature_name": "third_data_source#union_pay_advisors_UPPC094",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4252,
"feature_name": "third_data_source#union_pay_advisors_UPPC094",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4253,
"feature_name": "third_data_source#union_pay_advisors_UPPC094",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4254,
"feature_name": "third_data_source#union_pay_advisors_UPPC094",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4255,
"feature_name": "third_data_source#union_pay_advisors_UPPC094",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4256,
"feature_name": "third_data_source#union_pay_advisors_UPPC094",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4257,
"feature_name": "offline_base_feature#purchased_addr_ambi_num",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4258,
"feature_name": "offline_base_feature#purchased_addr_ambi_num",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4259,
"feature_name": "offline_base_feature#purchased_addr_ambi_num",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4260,
"feature_name": "offline_base_feature#purchased_addr_ambi_num",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4261,
"feature_name": "offline_base_feature#purchased_addr_ambi_num",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4262,
"feature_name": "offline_base_feature#purchased_addr_ambi_num",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4263,
"feature_name": "offline_base_feature#purchased_addr_ambi_num",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4264,
"feature_name": "third_data_source#union_pay_advisors_UPPE031",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4265,
"feature_name": "third_data_source#union_pay_advisors_UPPE031",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4266,
"feature_name": "third_data_source#union_pay_advisors_UPPE031",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4267,
"feature_name": "third_data_source#union_pay_advisors_UPPE031",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4268,
"feature_name": "third_data_source#union_pay_advisors_UPPE031",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4269,
"feature_name": "third_data_source#union_pay_advisors_UPPE031",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4270,
"feature_name": "third_data_source#union_pay_advisors_UPPE031",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4271,
"feature_name": "third_data_source#union_pay_advisors_UPPE070",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4272,
"feature_name": "third_data_source#union_pay_advisors_UPPE070",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4273,
"feature_name": "third_data_source#union_pay_advisors_UPPE070",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4274,
"feature_name": "third_data_source#union_pay_advisors_UPPE070",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4275,
"feature_name": "third_data_source#union_pay_advisors_UPPE070",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4276,
"feature_name": "third_data_source#union_pay_advisors_UPPE070",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4277,
"feature_name": "third_data_source#union_pay_advisors_UPPE070",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
},
{
"id": 4278,
"feature_name": "third_data_source#union_pay_advisors_UPPE125",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 4279,
"feature_name": "third_data_source#union_pay_advisors_UPPE125",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 4280,
"feature_name": "third_data_source#union_pay_advisors_UPPE125",
"feature_type": "区间",
"feature_value": "NULL",
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 4281,
"feature_name": "third_data_source#union_pay_advisors_UPPE125",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4282,
"feature_name": "third_data_source#union_pay_advisors_UPPE125",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4283,
"feature_name": "third_data_source#union_pay_advisors_UPPE125",
"feature_type": "字符串",
"feature_value": "NULL",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 4284,
"feature_name": "third_data_source#union_pay_advisors_UPPE125",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 1,
"data_round": 0
}
]
}
\ No newline at end of file
{
"offline_base_feature#purchased_addr_ambi_num": [
29
],
"offline_base_feature#stored_addr_num": [
33
],
"offline_behavior_feature#purchased_orderno": [
33
],
"offline_behavior_feature#user_clk_all_sku_max_price_7d": [
57
],
"offline_behavior_feature#user_clk_rc_sku_max_price_7d": [
83
],
"offline_behavior_feature#user_clk_sc_sku_max_frequence_price_7d": [
63
],
"third_data_source#union_pay_advisors_UPPA009": [
60
],
"third_data_source#union_pay_advisors_UPPC071": [
44
],
"third_data_source#union_pay_advisors_UPPC073": [
32
],
"third_data_source#union_pay_advisors_UPPC075": [
67
],
"third_data_source#union_pay_advisors_UPPC094": [
52
],
"third_data_source#union_pay_advisors_UPPC146": [
18
],
"third_data_source#union_pay_advisors_UPPC174": [
48
],
"third_data_source#union_pay_advisors_UPPC189": [
13
],
"third_data_source#union_pay_advisors_UPPC191": [
73
],
"third_data_source#union_pay_advisors_UPPC242": [
44
],
"third_data_source#union_pay_advisors_UPPC244": [
64
],
"third_data_source#union_pay_advisors_UPPD001": [
2
],
"third_data_source#union_pay_advisors_UPPD005": [
97
],
"third_data_source#union_pay_advisors_UPPD010": [
17
],
"third_data_source#union_pay_advisors_UPPD025": [
36
],
"third_data_source#union_pay_advisors_UPPD029": [
31
],
"third_data_source#union_pay_advisors_UPPE015": [
93
],
"third_data_source#union_pay_advisors_UPPE016": [
40
],
"third_data_source#union_pay_advisors_UPPE031": [
37
],
"third_data_source#union_pay_advisors_UPPE047": [
4
],
"third_data_source#union_pay_advisors_UPPE050": [
13
],
"third_data_source#union_pay_advisors_UPPE070": [
100
],
"third_data_source#union_pay_advisors_UPPE071": [
91
],
"third_data_source#union_pay_advisors_UPPE073": [
72
],
"third_data_source#union_pay_advisors_UPPE075": [
26
],
"third_data_source#union_pay_advisors_UPPE079": [
45
],
"third_data_source#union_pay_advisors_UPPE080": [
47
],
"third_data_source#union_pay_advisors_UPPE125": [
40
]
}
\ No newline at end of file
{
"model_name": "fst_assemble_flx_v8_score",
"model_id": 38,
"user_count": 2,
"data": [
{
"id": 17592,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17593,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17594,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17595,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17596,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17597,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17598,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17599,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17600,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17601,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17602,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17603,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17604,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17605,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17606,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17607,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17608,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17609,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17610,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17611,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17612,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17613,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17614,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17615,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17616,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17617,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17618,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17619,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17620,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17621,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17622,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17623,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17624,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17625,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17626,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
}
]
}
\ No newline at end of file
{
"third_data_source#brlhp_2_scorecust1": [
62,
83742
],
"third_data_source#pinTai_tb_score3": [
48,
204850.628585
],
"third_data_source#tc_universal_model_score": [
602176,
34
],
"third_data_source#td_fs_Fscore": [
425775.25222,
93
],
"third_data_source#xy_model3_score": [
793734,
44
]
}
\ No newline at end of file
{
"model_name": "fst_assemble_flx_v8_score",
"model_id": 38,
"user_count": 2,
"data": [
{
"id": 17627,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17628,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17629,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17630,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17631,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17632,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17633,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17634,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17635,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17636,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17637,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17638,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17639,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17640,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17641,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17642,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17643,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17644,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17645,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17646,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17647,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17648,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17649,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17650,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17651,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17652,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17653,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17654,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17655,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17656,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17657,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17658,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17659,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17660,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17661,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
}
]
}
\ No newline at end of file
{
"third_data_source#brlhp_2_scorecust1": [
856268.400515,
71
],
"third_data_source#pinTai_tb_score3": [
87,
854107.242335
],
"third_data_source#tc_universal_model_score": [
26,
567144
],
"third_data_source#td_fs_Fscore": [
78,
735635
],
"third_data_source#xy_model3_score": [
58,
717935
]
}
\ No newline at end of file
{
"model_name": "fst_assemble_flx_v8_score",
"model_id": 38,
"user_count": 2,
"data": [
{
"id": 17662,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17663,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17664,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17665,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17666,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17667,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17668,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17669,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17670,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17671,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17672,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17673,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17674,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17675,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17676,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17677,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17678,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17679,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17680,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17681,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17682,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17683,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17684,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17685,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17686,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17687,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17688,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17689,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17690,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17691,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17692,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17693,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17694,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17695,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17696,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
}
]
}
\ No newline at end of file
{
"third_data_source#brlhp_2_scorecust1": [
21,
395495
],
"third_data_source#pinTai_tb_score3": [
78960,
84
],
"third_data_source#tc_universal_model_score": [
574636,
84
],
"third_data_source#td_fs_Fscore": [
11481.07491,
81
],
"third_data_source#xy_model3_score": [
270754,
32
]
}
\ No newline at end of file
{
"model_name": "fst_assemble_flx_v8_score",
"model_id": 38,
"user_count": 2,
"data": [
{
"id": 17697,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17698,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17699,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17700,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17701,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17702,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17703,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17704,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17705,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17706,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17707,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17708,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17709,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17710,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17711,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17712,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17713,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17714,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17715,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17716,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17717,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17718,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17719,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17720,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17721,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17722,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17723,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17724,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17725,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17726,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17727,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17728,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17729,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17730,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17731,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
}
]
}
\ No newline at end of file
{
"third_data_source#brlhp_2_scorecust1": [
263456,
81
],
"third_data_source#pinTai_tb_score3": [
32,
170106
],
"third_data_source#tc_universal_model_score": [
59,
799853
],
"third_data_source#td_fs_Fscore": [
927103,
26
],
"third_data_source#xy_model3_score": [
902152.483966,
70
]
}
\ No newline at end of file
{
"model_name": "fst_assemble_flx_v8_score",
"model_id": 38,
"user_count": 2,
"data": [
{
"id": 17732,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17733,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17734,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17735,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17736,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17737,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17738,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17739,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17740,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17741,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17742,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17743,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17744,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17745,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17746,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17747,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17748,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17749,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17750,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17751,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17752,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17753,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17754,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17755,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17756,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17757,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17758,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17759,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17760,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17761,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17762,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17763,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17764,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17765,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17766,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
}
]
}
\ No newline at end of file
{
"third_data_source#brlhp_2_scorecust1": [
4,
870221
],
"third_data_source#pinTai_tb_score3": [
42,
643269
],
"third_data_source#tc_universal_model_score": [
18,
849534
],
"third_data_source#td_fs_Fscore": [
123051.03603,
96
],
"third_data_source#xy_model3_score": [
52,
78275
]
}
\ No newline at end of file
{
"model_name": "fst_assemble_flx_v8_score",
"model_id": 38,
"user_count": 2,
"data": [
{
"id": 17767,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17768,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17769,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17770,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17771,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17772,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17773,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17774,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17775,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17776,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17777,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17778,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17779,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17780,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17781,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17782,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17783,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17784,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17785,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17786,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17787,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17788,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17789,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17790,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17791,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17792,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17793,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17794,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17795,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17796,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17797,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17798,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17799,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17800,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17801,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
}
]
}
\ No newline at end of file
{
"third_data_source#brlhp_2_scorecust1": [
959930.846377,
55
],
"third_data_source#pinTai_tb_score3": [
112634,
53
],
"third_data_source#tc_universal_model_score": [
379250,
4
],
"third_data_source#td_fs_Fscore": [
160574,
33
],
"third_data_source#xy_model3_score": [
475586,
11
]
}
\ No newline at end of file
{
"model_name": "fst_assemble_flx_v8_score",
"model_id": 38,
"user_count": 10000,
"data": [
{
"id": 17802,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17803,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17804,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17805,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17806,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17807,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17808,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17809,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17810,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17811,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17812,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17813,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17814,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17815,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17816,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17817,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17818,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17819,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17820,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17821,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17822,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17823,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17824,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17825,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17826,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17827,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17828,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17829,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17830,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17831,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17832,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17833,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17834,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17835,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17836,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
}
]
}
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"model_name": "fst_assemble_flx_v8_score",
"model_id": 38,
"user_count": 1,
"data": [
{
"id": 17844,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17845,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17846,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17847,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17848,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17849,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17850,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17865,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17866,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17867,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17868,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17869,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17870,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17871,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17851,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17852,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17853,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17854,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17855,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17856,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17857,
"feature_name": "third_data_source#xy_model3_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17858,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17859,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17860,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17861,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17862,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17863,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17864,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17837,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17838,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17839,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17840,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17841,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17842,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17843,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
}
]
}
\ No newline at end of file
{
"third_data_source#brlhp_2_scorecust1": [
43
],
"third_data_source#pinTai_tb_score3": [
42
],
"third_data_source#tc_universal_model_score": [
60
],
"third_data_source#td_fs_Fscore": [
11
],
"third_data_source#xy_model3_score": [
1
]
}
\ No newline at end of file
{
"model_name": "fst_assemble_lx_v8_score",
"model_id": 39,
"user_count": 2,
"data": [
{
"id": 17977,
"feature_name": "third_data_source#ht_anti_fraud_a",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17978,
"feature_name": "third_data_source#ht_anti_fraud_a",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17979,
"feature_name": "third_data_source#ht_anti_fraud_a",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17980,
"feature_name": "third_data_source#ht_anti_fraud_a",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17981,
"feature_name": "third_data_source#ht_anti_fraud_a",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17982,
"feature_name": "third_data_source#ht_anti_fraud_a",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17983,
"feature_name": "third_data_source#ht_anti_fraud_a",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17984,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17985,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17986,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17987,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17988,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17989,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17990,
"feature_name": "third_data_source#brlhp_2_scorecust1",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17991,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17992,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 17993,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 17994,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17995,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17996,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17997,
"feature_name": "third_data_source#td_fs_Fscore",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 17998,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 17999,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 18000,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 18001,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 18002,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 18003,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 18004,
"feature_name": "third_data_source#pinTai_tb_score3",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 18005,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "1-100",
"feature_gdp": 20,
"data_type": 1,
"data_round": 0
},
{
"id": 18006,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": "0.1-1",
"feature_gdp": 15,
"data_type": 2,
"data_round": 6
},
{
"id": 18007,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "区间",
"feature_value": null,
"feature_gdp": 15,
"data_type": 3,
"data_round": 0
},
{
"id": 18008,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "-9999999",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 18009,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "异常",
"feature_value": "None",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 18010,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "字符串",
"feature_value": null,
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
},
{
"id": 18011,
"feature_name": "third_data_source#tc_universal_model_score",
"feature_type": "整数",
"feature_value": "0",
"feature_gdp": 10,
"data_type": 0,
"data_round": 0
}
]
}
\ No newline at end of file
{
"third_data_source#brlhp_2_scorecust1": [
3,
305031
],
"third_data_source#ht_anti_fraud_a": [
329929.872997,
63
],
"third_data_source#pinTai_tb_score3": [
728678,
40
],
"third_data_source#tc_universal_model_score": [
73,
324495
],
"third_data_source#td_fs_Fscore": [
50,
773159.832055
]
}
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment