Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
B
bigdata
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
QA
bigdata
Commits
6ed8fb08
Commit
6ed8fb08
authored
May 17, 2022
by
桂秋月
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
1
parent
6960865b
Changes
8
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
160 additions
and
72 deletions
+160
-72
publicSql.cpython-37.pyc
recommend/__pycache__/publicSql.cpython-37.pyc
+0
-0
searchTopic.cpython-37.pyc
recommend/__pycache__/searchTopic.cpython-37.pyc
+0
-0
cid3brandname_group_recommend.py
recommend/cid3brandname_group_recommend.py
+130
-69
payTopic.py
recommend/payTopic.py
+1
-1
publicFunc.py
recommend/publicFunc.py
+18
-0
publicSql.py
recommend/publicSql.py
+6
-0
searchTopic.py
recommend/searchTopic.py
+3
-0
changeLXQpassword.py
tools/changeLXQpassword.py
+2
-2
No files found.
recommend/__pycache__/publicSql.cpython-37.pyc
View file @
6ed8fb08
No preview for this file type
recommend/__pycache__/searchTopic.cpython-37.pyc
0 → 100644
View file @
6ed8fb08
File added
recommend/cid3brandname_group_recommend.py
View file @
6ed8fb08
from
recommend
import
*
def
backBatch
(
gid
,
isuuid
=
None
):
temp
=
defaultdict
(
list
)
if
isuuid
:
brandname_redis
=
"user_recall_mapping_jg_Category:"
+
gid
cid_redis
=
"user_recall_mapping_jg_brand:"
+
gid
else
:
brandname_redis
=
"device_recall_mapping_jg_Category:"
+
gid
cid_redis
=
"device_recall_mapping_jg_brand:"
+
gid
brandname_recallBatchUuid
=
getRedisValue
(
brandname_redis
)
.
get
(
brandname_redis
)
cid_recallBatchUuid
=
getRedisValue
(
cid_redis
)
.
get
(
cid_redis
)
brandname_batch_redis
=
'1'
+
":personal_recall_product_brand:"
+
brandname_recallBatchUuid
brandname_recallBatchUuid
=
getRedisValue
(
brandname_batch_redis
)
.
get
(
brandname_batch_redis
)
print
(
"brandname的批次数据:"
,
brandname_recallBatchUuid
)
temp
[
'brandname_batch'
]
=
brandname_recallBatchUuid
cid_batch_redis
=
'2'
+
":personal_recall_product_brand:"
+
cid_recallBatchUuid
cid_recallBatchUuid
=
getRedisValue
(
cid_batch_redis
)
.
get
(
cid_batch_redis
)
temp
[
'cid_batch'
]
=
cid_recallBatchUuid
print
(
"cid3的批次数据:"
,
cid_recallBatchUuid
)
return
temp
def
buzu
():
'''
:return: 本次补足的数据和appstart触发的逻辑是一样的
'''
return
appTopic
()
def
appTopic
():
temp
=
defaultdict
(
list
)
cid3_cate_brand_heat_rank_change_sql
=
cate_brand_heat_rank_sql
+
' where show_type=1 order by rank asc limit 30'
print
(
cid3_cate_brand_heat_rank_change_sql
)
brandname_cate_brand_heat_rank_change_sql
=
cate_brand_heat_rank_sql
+
' where show_type=2 order by rank asc limit 30'
print
(
brandname_cate_brand_heat_rank_change_sql
)
cid3_df
=
execmysl
(
119
,
cid3_cate_brand_heat_rank_change_sql
)
brandname_df
=
execmysl
(
119
,
brandname_cate_brand_heat_rank_change_sql
)
temp
[
'apptopic_cid3'
]
=
cid3_df
[
'show_id'
]
.
to_list
()
if
not
cid3_df
.
empty
else
[]
temp
[
'apptopic_brandname'
]
=
cid3
_df
[
'show_id'
]
.
to_list
()
if
not
cid3_df
.
empty
else
[]
temp
[
'apptopic_brandname'
]
=
brandname
_df
[
'show_id'
]
.
to_list
()
if
not
cid3_df
.
empty
else
[]
return
temp
def
clickTopic
(
skuno
,
cid3
=
None
,
brandid
=
None
):
def
clickTopic
(
skuno
=
None
,
cid3
=
None
,
brandid
=
None
,
cid2
=
None
,
cid1
=
None
):
temp
=
defaultdict
()
from
recommend.publicFunc
import
skuinfo
if
skuno
:
sku_infos
=
skuinfo
(
skuno
)
if
cid3
and
brandid
:
else
:
sku_infos
=
{}
if
cid3
and
brandid
and
cid1
and
cid2
:
sku_infos
[
'cid3'
]
=
cid3
sku_infos
[
'brand_id'
]
=
brandid
sku_infos
[
'brand_id'
]
=
int
(
brandid
)
sku_infos
[
'cid2'
]
=
cid2
sku_infos
[
'cid1'
]
=
cid1
print
(
sku_infos
)
cid3_intention_change_sql
=
concatSql
(
cate_brand_intention_score_sql
,
**
{
"
show
_id"
:[
sku_infos
.
get
(
'cid3'
),
sku_infos
.
get
(
'cid2'
),
sku_infos
.
get
(
'cid1'
)]})
**
{
"
category
_id"
:[
sku_infos
.
get
(
'cid3'
),
sku_infos
.
get
(
'cid2'
),
sku_infos
.
get
(
'cid1'
)]})
cid3_intention_change_sql
+=
" or brand_id='{}'"
.
format
(
sku_infos
.
get
(
'brand_id'
))
print
(
'cicktopic 转换后的sql:'
,
cid3_intention_change_sql
)
cid3brandname_df
=
execmysl
(
119
,
cid3_intention_change_sql
)
#.sort_values(by=['rank'])['']
print
(
'cicktopic的结果:'
,
cid3brandname_df
.
head
(
1
))
##cid3+brandid
temp
[
'clicktopic_cid3'
]
=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid3'
))
temp
[
'clicktopic_cid3'
]
=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid3'
))
&
(
cid3brandname_df
[
'show_type'
]
==
1
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##cid2+brandid
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid2'
))
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid2'
))
&
(
cid3brandname_df
[
'show_type'
]
==
1
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##cid1+brandid
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid1'
))
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid1'
))
&
(
cid3brandname_df
[
'show_type'
]
==
1
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##cid3+无名品牌分
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid3'
))
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid3'
))
&
(
cid3brandname_df
[
'show_type'
]
==
1
)
&
(
cid3brandname_df
[
'brand_id'
]
==-
1
)]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##cid2+无名品牌分
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid2'
))
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid2'
))
&
(
cid3brandname_df
[
'show_type'
]
==
1
)
&
(
cid3brandname_df
[
'brand_id'
]
==-
1
)]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##cid1+无名品牌分
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid1'
))
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid1'
))
&
(
cid3brandname_df
[
'show_type'
]
==
1
)
&
(
cid3brandname_df
[
'brand_id'
]
==-
1
)]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##无品类分+品牌分
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==-
1
)
temp
[
'clicktopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==-
1
)
&
(
cid3brandname_df
[
'show_type'
]
==
1
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
temp
[
'clicktopic_cid3'
]
=
removeRepeat
(
temp
[
'clicktopic_cid3'
])[:
30
]
##cid3+brandid
temp
[
'clicktopic_brandname'
]
=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid3'
))
temp
[
'clicktopic_brandname'
]
=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid3'
))
&
(
cid3brandname_df
[
'show_type'
]
==
2
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##cid2+brandid
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid2'
))
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid2'
))
&
(
cid3brandname_df
[
'show_type'
]
==
2
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##cid1+brandid
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid1'
))
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid1'
))
&
(
cid3brandname_df
[
'show_type'
]
==
2
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##cid3+无名品牌分
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid3'
))
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid3'
))
&
(
cid3brandname_df
[
'show_type'
]
==
2
)
&
(
cid3brandname_df
[
'brand_id'
]
==-
1
)]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##cid2+无名品牌分
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid2'
))
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid2'
))
&
(
cid3brandname_df
[
'show_type'
]
==
2
)
&
(
cid3brandname_df
[
'brand_id'
]
==-
1
)]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##cid1+无名品牌分
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==
sku_infos
.
get
(
'cid1'
))
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==
sku_infos
.
get
(
'cid1'
))
&
(
cid3brandname_df
[
'show_type'
]
==
2
)
&
(
cid3brandname_df
[
'brand_id'
]
==-
1
)]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
##无品类分+品牌分
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
show
_id'
]
==-
1
)
temp
[
'clicktopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'
category
_id'
]
==-
1
)
&
(
cid3brandname_df
[
'show_type'
]
==
2
)
&
(
cid3brandname_df
[
'show_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'
rank'
]
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
.
sort_values
(
by
=
[
'
final_score'
],
ascending
=
False
)[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
temp
[
'clicktopic_brandname'
]
=
removeRepeat
(
temp
[
'clicktopic_brandname'
])[:
30
]
...
...
@@ -90,47 +130,68 @@ def clickTopic(skuno,cid3=None,brandid=None):
def
searchTopic
():
temp
=
defaultdict
(
list
)
from
recommend.searchTopic
import
getseed
,
step1
top10_sku
,
_
=
step1
()
#top10_sku,_=step1()
top10_sku
=
[
'108385546803201'
,
'257610058310145'
,
'255342753613825'
,
'253183834981889'
,
'261761672684545'
,
'253184857873409'
,
'310400617292289'
,
'276970748256769'
,
'100007743035'
,
'7261582'
]
sku_infos
=
getseed
(
top10_sku
)
cid3_intention_change_sql
=
concatSql
(
cate_brand_intention_score_sql
,
**
{
"show_id"
:
sku_infos
.
get
(
'cid3'
)})
cid3_intention_change_sql
+=
" or brand_id='{}'"
.
format
(
sku_infos
.
get
(
'brand_id'
))
cid3brandname_df
=
execmysl
(
119
,
cid3_intention_change_sql
)
temp
[
'searchtopic_cid3'
]
=
cid3brandname_df
[(
cid3brandname_df
[
'show_id'
]
==
sku_infos
.
get
(
'cid3'
))
&
(
cid3brandname_df
[
'show_type'
]
==
1
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'rank'
])[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
temp
[
'searchtopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'show_id'
]
==
sku_infos
.
get
(
'cid3'
))
&
(
cid3brandname_df
[
'show_type'
]
==
1
)
&
(
cid3brandname_df
[
'brand_id'
]
==-
1
)]
\
.
sort_values
(
by
=
[
'rank'
])[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
temp
[
'searchtopic_cid3'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'show_id'
]
==-
1
)
&
(
cid3brandname_df
[
'show_type'
]
==
1
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'rank'
])[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
temp
[
'searchtopic_brandname'
]
=
cid3brandname_df
[(
cid3brandname_df
[
'show_id'
]
==
sku_infos
.
get
(
'cid3'
))
&
(
cid3brandname_df
[
'show_type'
]
==
2
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'rank'
])[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
temp
[
'searchtopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'show_id'
]
==
sku_infos
.
get
(
'cid3'
))
&
(
cid3brandname_df
[
'show_type'
]
==
2
)
&
(
cid3brandname_df
[
'brand_id'
]
==-
1
)]
\
.
sort_values
(
by
=
[
'rank'
])[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
temp
[
'searchtopic_brandname'
]
+=
cid3brandname_df
[(
cid3brandname_df
[
'show_id'
]
==-
1
)
&
(
cid3brandname_df
[
'show_type'
]
==
2
)
&
(
cid3brandname_df
[
'brand_id'
]
==
sku_infos
.
get
(
'brand_id'
))]
\
.
sort_values
(
by
=
[
'rank'
])[
'show_id'
]
.
to_list
()[:
30
]
if
not
cid3brandname_df
.
empty
else
[]
temp
[
'searchtopic_cid3'
]
=
removeRepeat
(
temp
[
'searchtopic_cid3'
])[:
30
]
temp
[
'searchtopic_brandname'
]
=
removeRepeat
(
temp
[
'searchtopic_brandname'
])[:
30
]
print
(
sku_infos
)
temp
=
clickTopic
(
cid3
=
sku_infos
.
get
(
'cid3'
),
brandid
=
sku_infos
.
get
(
'brand_id'
),
cid1
=
9987
,
cid2
=
653
)
return
temp
# cid3_intention_change_sql=concatSql(cate_brand_intention_score_sql,
# **{"category_id":sku_infos.get('cid3')})
# cid3_intention_change_sql+=" or brand_id='{}'".format(sku_infos.get('brand_id'))
# print("sql==",cid3_intention_change_sql)
# cid3brandname_df=execmysl(119,cid3_intention_change_sql)
# print("sql结果:",cid3brandname_df)
# cid3brandname_df['category_id']=cid3brandname_df['category_id'].astype('string')
# cid3brandname_df['brand_id']=cid3brandname_df['brand_id'].astype('string')
#
# temp['searchtopic_cid3']=cid3brandname_df[(cid3brandname_df['category_id']==sku_infos.get('cid3'))
# & (cid3brandname_df['show_type']==1) &(cid3brandname_df['brand_id']==sku_infos.get('brand_id'))] \
# .sort_values(by=['final_score'],ascending=False)['show_id'].to_list()[:30] if not cid3brandname_df.empty else []
#
# temp['searchtopic_cid3']+=cid3brandname_df[(cid3brandname_df['category_id']==sku_infos.get('cid3'))
# & (cid3brandname_df['show_type']==1) &(cid3brandname_df['brand_id']=='-1')] \
# .sort_values(by=['final_score'],ascending=False)['show_id'].to_list()[:30] if not cid3brandname_df.empty else []
#
# temp['searchtopic_cid3']+=cid3brandname_df[(cid3brandname_df['category_id']=='-1')
# & (cid3brandname_df['show_type']==1) &(cid3brandname_df['brand_id']==sku_infos.get('brand_id'))] \
# .sort_values(by=['final_score'],ascending=False)['show_id'].to_list()[:30] if not cid3brandname_df.empty else []
# print(temp)
# temp['searchtopic_brandname']=cid3brandname_df[(cid3brandname_df['category_id']==sku_infos.get('cid3'))
# & (cid3brandname_df['show_type']==2) &(cid3brandname_df['brand_id']==sku_infos.get('brand_id'))] \
# .sort_values(by=['final_score'],ascending=False)['show_id'].to_list()[:30] if not cid3brandname_df.empty else []
#
# temp['searchtopic_brandname']+=cid3brandname_df[(cid3brandname_df['category_id']==sku_infos.get('cid3'))
# & (cid3brandname_df['show_type']==2) &(cid3brandname_df['brand_id']=='-1')] \
# .sort_values(by=['final_score'],ascending=False)['show_id'].to_list()[:30] if not cid3brandname_df.empty else []
#
# temp['searchtopic_brandname']+=cid3brandname_df[(cid3brandname_df['category_id']=='-1')
# & (cid3brandname_df['show_type']==2) &(cid3brandname_df['brand_id']==sku_infos.get('brand_id'))] \
# .sort_values(by=['final_score'],ascending=False)['show_id'].to_list()[:30] if not cid3brandname_df.empty else []
# temp['searchtopic_cid3']=removeRepeat(temp['searchtopic_cid3'])[:30]
# temp['searchtopic_brandname']=removeRepeat(temp['searchtopic_brandname'])[:30]
# return temp
def
allrun
(
skuno
):
t
=
appTopic
()
tt
=
clickTopic
()
print
(
t
)
if
__name__
==
'__main__'
:
print
(
clickTopic
(
'179240378044417'
))
#print(clickTopic('179240378044417'))
#print(allrun())
gid
=
'479610b6-f346-474f-8d3a-e4de04db8f6e-002'
gid1
=
'479610b6-f346-474f-8d3a-e4de04db8f6e-001'
print
(
'批次:'
,
backBatch
(
gid
,
isuuid
=
0
))
print
(
"***"
*
50
)
print
(
'批次:'
,
backBatch
(
gid1
,
isuuid
=
1
))
#skuno='201782177569280'
#print(clickTopic(skuno))
#print(searchTopic())
...
...
recommend/payTopic.py
View file @
6ed8fb08
...
...
@@ -53,7 +53,7 @@ def payRecall(skuno,num=100):
chaji
=
subtraction
(
subtraction
(
final_skus
,
temp
.
get
(
'70011'
)),
temp
.
get
(
'70012'
))
temp
[
'70013'
]
=
chaji
print
(
"加购图关联表召回stop"
)
return
temp
#
return temp
print
(
"ALS相关表召回start"
,
'**'
*
50
)
als_correlation_change_redis
=
als_correlation_redis
.
format
(
sku_no
=
skuno
)
.
strip
()
...
...
recommend/publicFunc.py
View file @
6ed8fb08
...
...
@@ -39,6 +39,24 @@ def minPriceFill(skus,num=100):
return
temp
[:
num
]
def
execCondition
(
df
,
condition
,
needcolums
,
orderby
=
None
):
'''
:param df: dataframe格式
:param condition: 字符串,筛选条件
:param needcolums: 字符串,需要从df拿到的字段
:param orderby: 默认dict格式,如果为空,则不排序。
{'ordercolums':XX,'type':XX}.ordercolums表示按照某个字段排序,type表示正排还是倒排
:return: 条件筛选后并返回数据
'''
if
orderby
:
col
=
orderby
.
get
(
'ordercolums'
)
isasc
=
orderby
.
get
(
'type'
)
or
1
return
df
[
eval
(
condition
)]
.
sort_values
(
by
=
[
col
],
ascending
=
isasc
)[
needcolums
]
.
to_list
()
else
:
return
df
[
eval
(
condition
)][
needcolums
]
.
to_list
()
def
skuinfo
(
sku
):
change_sql
=
concatSql
(
skuinfo_sql
,
**
{
"sku_no"
:
sku
})
sku_df
=
execmysl
(
119
,
change_sql
)
...
...
recommend/publicSql.py
View file @
6ed8fb08
...
...
@@ -3,6 +3,12 @@ dapan_sql='''
select id,sku_no,price,cid1,cid2,cid3,brand_name,brand_id from
offline_recommend.recommend_same_product
'''
##根据cid3获取cid2,cid1等数据
cid1_3_sql
=
"""
select distinct c_id1,c_id2,c_id3 from kdsp.t_sku_info
"""
##商品表
skuinfo_sql
=
'''
select id,sku_no,sku_name,price,cid1,cid2,cid3,brand_name,brand_id,source_type from
...
...
recommend/searchTopic.py
View file @
6ed8fb08
...
...
@@ -21,9 +21,12 @@ def getseed(top10_sku):
print
(
sql
)
df
=
execmysl
(
119
,
sql
)
df
[
'cid3'
]
=
df
[
'cid3'
]
.
astype
(
'string'
)
df
[
'brand_id'
]
=
df
[
'brand_id'
]
.
astype
(
'string'
)
cid3
=
df
.
groupby
(
by
=
[
'cid3'
])
.
groups
.
__repr__
()
#['cid3']#.max()
brandname
=
df
.
groupby
(
by
=
[
'brand_name'
])
.
groups
.
__repr__
()
brandid
=
df
.
groupby
(
by
=
[
'brand_id'
])
.
groups
.
__repr__
()
# print('--',brandid,type(brandid))
# print('--',brandname,type(brandid))
result
[
'cid3'
]
=
maxdict
(
**
json
.
loads
(
cid3
.
replace
(
"'"
,
'"'
)))
result
[
'brand_name'
]
=
maxdict
(
**
json
.
loads
(
brandname
.
replace
(
"'"
,
'"'
)))
result
[
'brand_id'
]
=
maxdict
(
**
json
.
loads
(
brandid
.
replace
(
"'"
,
'"'
)))
...
...
tools/changeLXQpassword.py
View file @
6ed8fb08
...
...
@@ -14,7 +14,7 @@ def modifyPasseord(name,namespace):
salt_df
=
pd
.
read_sql
(
get_salt
,
con
=
conn_db_11
)
temp
=
salt_df
.
to_dict
(
orient
=
'records'
)
if
not
temp
:
print
(
'[
name
] is not exist'
.
format
(
name
=
name
))
print
(
'[
{name}
] is not exist'
.
format
(
name
=
name
))
return
0
salt
=
temp
[
0
][
'salt'
]
.
encode
()
#salt=b'UwKESe3cvf703Z30' #t_sys_user.salt
...
...
@@ -28,4 +28,4 @@ def modifyPasseord(name,namespace):
print
(
"this is update"
)
if
__name__
==
'__main__'
:
modifyPasseord
(
'haiyuan.wen'
,
'qa'
)
\ No newline at end of file
modifyPasseord
(
'dong.chao'
,
'qa'
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment